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Notations

Symbols Description

N0 set of non-negative integers
Z set of integers
R≥0 set of non-negative real numbers

G = (V,A) directed graph with nodes V and arcs A
P set of paths in a graph G
C set of cycles in a graph G
δ−(v) set of ingoing arcs into node v ∈ V
δ+(v) set of outgoing arcs into node v ∈ V

u : A→ N0 capacity function on the arcs A
τ : A→ N0 transit time function on the arcs A
c : A→ N0 cost function on the arcs A
c : A→ Nm

0 lexicographic cost function on the arcs A
b : V → Z balance function on the nodes V
s1, . . . , sn ∈ V source nodes with b(si) > 0 for 1 ≤ i ≤ n
v1, . . . ,vm ∈ V neutral nodes with b(vi) = 0 for 1 ≤ i ≤ m
t1, . . . , th ∈ V sink nodes with b(ti) < 0 for 1 ≤ i ≤ h
h number of sinks
T ∈ N0 time horizon

Networks and Flows
(G,u), (G,u,c) static flow network (with costs)
(G,u, τ), (G,u, τ,c) flow over time network (with costs)
(G,u, τ,c) flow over time network with lexicographic costs
x : A→ R≥0 static flow
fa : Z→ R≥0, a ∈ A flow over time
y : P∪C→ R≥0 flow decomposition of a static flow x
value(x), value( f ) value of a flow

←→
G reverse graph additionally containing all backward arcs
Gx residual graph with regard to a flow x
(G,u)x static residual network with regard to a flow x
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Generalized Temporally Repeated Flows
Pa(θ) set of paths with flow over arc a ∈ A at time point θ ∈ {0, . . . ,T }
delay( f , f ′) starting point of flow f ′ relative to end point of flow f
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1 Introduction

In German hospitals, the shortage of caregivers is a well-known problem. It has existed for
several years and there is no improvement in sight, see [Gö14] and [Sla22]. Employees crit-
icize the increasing workload and the resulting decline in the quality of their work [Ger21].
Supplementary to employing additional health care workers (which seems to be easier said
than done [Sla22]), the issue might be tackled by optimizing the workflows in the hospitals.
The less time logistical processes take up, the more time can be devoted to the patients. One
of those processes is the transportation of beds in hospitals. There exists research on the
transportation of patients with their beds, e.g. [BLMN10] proposed a two-phase heuristic
procedure that aims to reduce waiting time for the patients and the number of used vehicles.
In [PBR17], the combined transport of patients and utilities is explored via a discrete-event
simulation tool. However, we were unable to find research on the transportation of freshly
made beds from the storage to the patients.

Usually, there is one place in the hospital where the beds get new sheets, which we call
the main depot. When a new patient arrives at a station, an employee calls the main depot
and then another worker transports a freshly made bed to the station. The bed makes its
way through the hospital and blocks elevators and corridors in the process, compare with
Figure 1.1. Since this currently happens during working hours, patients and caregivers are
being held up by this transportation. A few questions may arise now: If the number of
expected patients per station is known, is a distribution of the beds before the start of the
workday possible? How can all demanded beds get transported as fast as possible (hence in
a minimal overall timespan)? How can we engage as few employees as possible?

Main
Depot

Corridor
 

Station
1

Station
2

Corridor

Elevator Corridor

Corridor

Figure 1.1: A model of the pathways in a hospital that connect the main depot with the
stations. Freshly made beds are stored in the main depot and get transported to
the stations on demand.
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Flow Theory The described problem may be addressed with flow theory, which is a part
of the mathematical field of discrete optimization and investigates the transportation of flow
on flow networks. A flow network consists of a directed graph and several functions on
the arcs and nodes of the graph. Originally, flow theory focused on so-called static flows
[FJF62], where the transportation itself takes no time and only capacities – and possibly
costs – of paths are given. Research questions include finding a maximal flow (which trans-
ports as many units as possible) or a minimal cost flow (which transports a given number of
units with as little cost as possible).

Flow networks can be extended by transit times, which describe the time of the transporta-
tion along a path. Common research questions on these flow over time networks are those of
finding (i) a maximal flow within a given time horizon, (ii) a minimal cost flow that satisfies
a given demand within a fixed time horizon, or (iii) a flow which satisfies a given demand as
fast as possible. The last research problem is called the Quickest Transshipment Problem,
and it applies best to the question of how to transport the freshly made beds in a hospital as
fast as possible for a given demand of each station.

Generally, flows on flow over time networks do not have a certain structure. But there exist
special flows over time, the so-called temporally repeated flows, that are constructed by
repeatedly sending flow along a fixed set of paths in a given time horizon. In a hospital, the
usage of a temporally repeated flow for the distribution of beds results in a transportation
plan which is easy to remember and execute due to its structure. In Figure 1.1, a teal-colored
path leads from the main depot to the first station, and an orange-colored path leads from the
main depot to the second station. Sending along those two paths as often as possible results
in a temporally repeated flow. For problem (iii), the Quickest Transshipment Problem, there
exists an algorithm that computes optimal solutions in polynomial time [HT00]. However, in
general, these solutions do not have any structure. The execution of such a plan in a hospital
might be too complicated and could make the process even longer instead of quicker.

Herein, we investigate the mentioned research problems on flow over time networks for
different types of – more or less structured – flows.

Contribution In this work, we define uniform flows which are very similar to temporally
repeated flows, but the flow is sent equally often over all paths. Then, we aim to find a
compromise between optimal solutions for the Quickest Transshipment Problem and well-
structured flows (which might be far from optimal). Therefore, we define k-temporally
repeated and k-uniform flows, for k ∈ N0, as the consecutive combination of k temporally
repeated (resp. uniform) flows.

We analyze the mentioned research problems and show whether there always exist integer
optimal solutions, and reduce the Quickest Transshipment Problem to the problem of find-
ing a flow with minimal costs in a given time horizon (Min Cost Flow over Time Problem).
Then, we analyze the Quickest Transshipment Problem for k-uniform flows on tree networks
from different perspectives. Therefore, we present a naive algorithm that enables us to calcu-
late lower and upper bounds for an optimal solution. Furthermore, we define an equivalence
relation on tree networks and show that we may focus our research on almost-binary tree
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networks, where the underlying graph has a special structure. We compute optimal solutions
for small almost-binary tree networks and give an intuition on why those solutions cannot
be efficiently reused to calculate optimal solutions for larger networks (e.g. via a greedy
algorithm). Finally, we show how to compute an integer solution from the optimal solution
of the linear relaxation of the problem.

Additionally, we consider flow over time networks with a single source, a single sink, and
costs, and extend the algorithm for finding maximal flows over time (which computes tem-
porally repeated flows [FJF58]) such that it computes maximal flows where the maximal
costs over all points in time are minimized. In a hospital, such an algorithm may be used to
compute a transportation plan from the main depot to a single station which moves all beds
as fast as possible while minimizing the number of working employees.

Organization In Chapter 2, we present the definitions of different types of flows and
flows over time, and compare the definition using discrete time points or continuous time.
In the subsequent chapter, we state the common research problems, reduce the Quickest
Transshipment to the Min Cost Flow over Time Problem and examine the integrality of
the given problems. In Chapter 4, we analyze the Quickest Transshipment Problem for k-
uniform flows on tree networks. Last but not least, Chapter 5 contains an optimality criterion
for lexicographic flows, where the costs are tuples and ordered lexicographically, and the
algorithm for finding maximal flows over a given time horizon with minimal costs at each
point in time.
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2 Theory of Flows

In this chapter, we look at the basic definitions of flow theory specified in other works
and extend the theory by defining special types of flows over time. Those types are more
structured than arbitrary flows over time but not as rigidly structured as temporally repeated
flows. The structure of the flows makes them easier to remember and more practical for real-
life applications, but at the same time, we are able to find flows that yield better solutions
for the problems considered in Chapter 3 than simple temporally repeated flows.

Before we start with the theory of flows, we state a few basic mathematical notions that are
used in the rest of this work.

We consider directed graphs G = (V,A), where δ−(v)= {a ∈ A | a= (w,v)} is the set of ingoing
arcs for any node v ∈ V and δ+(v) = {a ∈ A | a = (v,w)} is the set of outgoing arcs.

We use the notion of subsets for tuples and write (u1, . . . ,un) ⊆ (v1, . . . ,vm) for ui,v j ∈ N0,
1 ≤ i ≤ n, 1 ≤ j ≤ m, if {u1, . . . ,un} ⊆ {v1, . . . ,vm}.

We denote by P a set of paths in a graph G, and for p ∈ P we write p = (v1, . . . ,vm) for
v1, . . . ,vm ∈ V . Furthermore, when observing a subpath of p from some node vi ∈ V to
another node v j ∈ V , we write p[vi,v j] = (vi, . . . ,v j) ⊆ p.

2.1 Static Flows and Flows over Time

In the following, we define the capacity, cost, transit time, and balances on the nodes and
arcs of a graph G which can be found among others in [HT00], [SS14].

Definition 2.1. For a graph G = (V,A),

• the capacity function is u : A→ N0,

• the cost function is c : A→ N0, and

• the transit time function is τ : A→ N0.

Often, we abbreviate the functions and write ua, ca, or τa instead of u(a), c(a), or τ(a) for
an arc a ∈ A.

Whereas the previous three functions are defined on the arcs of a graph, the next function
maps a value to each node.

Definition 2.2 (Balances). The function b : V→ Z with
∑

v∈V b(v) = 0 is a so-called balance
function. It represents the supply (if b(v) > 0) or demand (if b(v) < 0) of each node v ∈ V.
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Via the balance function, the set of nodes may be divided into the sources, the sinks, and the
neutral nodes in a graph. We name the sources s1, . . . , sn ∈ V and they each have a supply
b(si) > 0 for all 1 ≤ i ≤ n. We call the sinks t1, . . . , th ∈ V and they have a demand b(t j) < 0,
1 ≤ j ≤ h. The remaining nodes v1, . . . ,vm ∈ V have b(vℓ) = 0, 1 ≤ ℓ ≤ m.

Throughout this work, we consider only balance functions with exactly one source and name
this node s ∈ V .

Remark 2.3. Let us consider the application on hospitals which was discussed in Chapter 1.
In the hospital, the freshly made beds are stored in the main depot usually somewhere in the
basement. Then, they are transported to various smaller depots at individual stations. We
analyze the transportation from the main depot to the smaller depots.

The h ∈ N0 smaller depots can be modeled as the sinks t1, . . . , th ∈ V and the main depot
is the single source s ∈ V in the graph G. The remaining nodes v1, . . . ,vm ∈ V model the
intersections of corridors, elevator exits, and similar crossings. The arcs in the graph G
represent the pathways, corridors, elevators, and the like, which connect the places in the
hospital. The interpretation of the functions may look like this:

• The balance function b contains the demand for each smaller depot and the corre-
sponding supply for the main depot. The function is set to zero for all other nodes.

• The capacity function u describes for each pathway the maximal number of beds that
may be transported through it at the same time. In an elevator, there may not be place
for more than one bed, whereas a large corridor could contain many more beds.

• The costs c of each pathway may be used in different ways. We could use the cost
function to describe the volume of the transportation of a bed through a pathway.
Reducing the costs of a solution therefore reduces the overall volume of the trans-
portation and hence the stress that is imposed on the patients.

• The transit time τ represents the duration of the transportation from one bed along
each pathway. Here, transportation via an elevator might be slower than through a
corridor.

The composition of a graph with one or more of the previously described functions yields
a so-called network. We differentiate between networks with or without the transit time
function.

Definition 2.4 (Flow Network). For a directed graph G = (V,A), a capacity function u, and
a cost function c, we call (G,u) a flow network and (G,u,c) a flow network with costs.

Figure 2.1 shows an exemplary flow network and a corresponding balance function with
one source s ∈ V and two sinks t1, t2 ∈ V . We often write static flow network if we want to
emphasize the difference to the flow over time network defined next.

Definition 2.5 (Flow Over Time Network, [KW04]). For a directed graph G = (V,A), a
capacity function u, a transit time function τ, and a cost function c, we call (G,u, τ) a flow
over time network and (G,u, τ,c) a flow over time network with costs.

6
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4

v1
4

v24

t1

-4

2

2

t2

0

2

Figure 2.1: A flow network (G,u) with a balance function b. The labels on the arrows de-
scribe the capacities and the labels on the nodes specify the balances. Hence, it
is b(s) = 4, b(v1) = 0, b(v2) = 0, b(t1) = −4, and b(t2) = 0.

s

8

v1
(4,1)

v2(4,2)

t1

-6

(2,5)

(2,1)

t2

-2

(2,1)

Figure 2.2: A flow over time network (G,u, τ) with a balance function b. The labels (u, τ)
on the arrows describe the capacities and the transit times and the labels on the
nodes specify the balances.

An example of a flow over time network is given in Figure 2.2. We assume that there exist no
arcs a ∈ A with capacity u(a) = 0. Otherwise, they could be deleted from the graph without
loss of generality for all considered problems in this work.

In the rest of this section, we give the definitions of the most general flows on static flow
networks and flow over time networks. We consider the value of a flow and last but not
least, we define residual networks.

We state the definition of a static flow on a static flow network.

Definition 2.6 (Static Flow, [FJF62]). For a flow network (G,u) and a balance function b,
a feasible static b-flow is a function x : A→ R≥0, which satisfies

1. the capacity constraint 0 ≤ x(a) ≤ u(a) for all a ∈ A,

2. and the flow conservation
∑

a∈δ−(v) x(a)−
∑

a∈δ+(v) x(a) = −b(v) for all v ∈ V.

The definition of a b-flow for a flow network with costs is similar. If the balances are
arbitrary, we simply say flow instead of b-flow.

Example 2.7. When trying to find a static flow that solves the network in Figure 2.1, there
exists only one possible solution. The flow x with x(s,v1) = 4, x(v1, t1) = 2, x(v1,v2) =
2, x(v2, t1) = 2 and x(v2, t2) = 0 fulfills the demand and supply constraints of the balance
function, while also satisfying the capacity constraint and flow conservation.

Note that we write x(v,w) instead of x((v,w)) for v,w ∈ V if the meaning is clear. In subse-
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quent sections, we use the property that every flow can be decomposed into a set of paths
and cycles, called a flow decomposition.

Lemma 2.8 (Flow Decomposition, [Wil19]). Let x be a feasible static b-flow. Then, there
exists a set of paths P, a set of cycles C, and a function y : P∪C→ R≥0, the so-called flow
decomposition, which satisfies

x(a) =
∑
p∈P,

if a∈p

y(p)+
∑
q∈C,
if a∈q

y(q) ∀a ∈ A.

Each flow can be represented by at most |A| paths and cycles P∪C and the corresponding
flow decomposition y, see [Wil19]. We call a flow composition y : P∪C→ R≥0 of a flow x
a path decomposition if C = ∅.

The concept of static flows can be generalized to flows over time (sometimes also called
dynamic flows), where it takes a unit of flow a certain amount of time to get from one
node to an adjacent node. This is represented in flow over time networks via the transit
time function. The common definition of flows over time uses integrals to measure how
much flow actually went through the network and assumes that the time is continuous.
Here, we consider only discrete time steps. We show the equivalence of both definitions in
Section 2.3.

Definition 2.9 (Flow Over Time, [KW04]). For a flow over time network (G,u, τ), a time
horizon T ∈N0, and a balance function b, a feasible b-flow over time is a family of functions
fa : Z→ R≥0, a ∈ A, which satisfy

1. the capacity constraint 0 ≤ fa(θ) ≤ u(a) for all a ∈ A and θ ∈ {0, . . . ,T },

2. the flow completion fa(θ) = 0 for all a ∈ A and θ > T −τa,

3. the weak flow conservation for all v ∈ V \ {s} and θ ∈ {0, . . . ,T }

∑
a∈δ−(v)

θ−τa∑
ξ=0

fa(ξ)−
∑

a∈δ+(v)

θ∑
ξ=0

fa(ξ) ≥ 0,

4. and the strict flow conservation for all v ∈ V

∑
a∈δ−(v)

T−τa∑
ξ=0

fa(ξ)−
∑

a∈δ+(v)

T∑
ξ=0

fa(ξ) = −b(v).

Furthermore, fa(θ) = 0 for θ < {0, . . . ,T }.

For a flow over time network (G,u, τ), a balance function b, and a time horizon T , we define
F (G,u, τ,b,T ) as the set of all feasible flows over time.

Similar to a static flow, a flow over time needs to fulfill the capacity constraint for each
arc and (additionally) each point in time. A flow over time also needs to satisfy two flow

8
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s

v1

v2

t1

t2

4 4

2 4
2

2 2
2

Figure 2.3: A visualization of a flow over time on the network and balance function depicted
in Figure 2.2 with time horizon 6. On the x-axis we have the discrete points in
time, and on the y-axis the nodes of the network. Here, we send units at time 0
along two paths from the source s to the sink t1 and at time 1 along two paths
from the source s to the sinks t1 and t2.

conservation constraints: The weak flow conservation ensures that the outflow of each node
is smaller or equal to the inflow. We fix a time horizon that specifies the overall time during
which flow is sent along arcs and the strict flow conservation constraint guarantees that for
each node, the amount that is received or sent until the end of the time horizon equals exactly
the amount specified by the balance function. Furthermore, we ensure that every unit of the
flow reaches a node before the time horizon is over. Therefore, we specify that a unit can
only be sent along an arc if the transit time is not longer than the remaining time. Take a
look at Figure 2.3 for a visualization of a flow over time. For a flow over time network with
costs, the b-flow over time is defined similarly.

In this work, we consider flows over time without storage in nodes that are neither sources
nor sinks. In [KW04], it is shown that every flow over time with storage can be transformed
into a flow over time without storage. Hence, we do not need hold-over arcs and the weak
flow conservation might also be strict (but for this work, there is no harm in defining it as
weak). Furthermore, we also omit the balances if they are irrelevant and simply write flow
over time.

Now, we define the value of static flows and flows over time as the overall number of units
that is sent from the source to the sinks.

Definition 2.10 (Value of a Static Flow). The value of a static b-flow x on a network (G,u)
is defined as

value(x) :=
∑

a∈δ+(s)

x(a)−
∑

a∈δ−(s)

x(a) =
h∑

i=1

∑
a∈δ−(ti)

x(a)−
h∑

i=1

∑
a∈δ+(ti)

x(a).

The value of a static flow is well-defined, see [Wil19]. It holds that 1
2
∑

v∈V |b(v)| = value(x)

9



for any b-flow x. The value of a flow over time also equals the number of sent units.

Definition 2.11 (Value, [SS14]). The value of a b-flow over time f on a network (G,u, τ) is
defined as

value( f ) :=
∑

a∈δ+(s)

T∑
θ=0

fa(θ)−
∑

a∈δ−(s)

T∑
θ=0

fa(θ) =
h∑

i=1

∑
a∈δ−(ti)

T∑
θ=0

fa(θ)−
h∑

i=1

∑
a∈δ+(ti)

T∑
θ=0

fa(θ).

For a point in time θ ∈ {0, . . . ,T }, we also define the value until θ of a flow over time f as

value( f (θ)) :=
h∑

i=1

∑
a∈δ−(ti)

θ∑
ξ=0

fa(ξ)−
h∑

i=1

∑
a∈δ+(ti)

θ∑
ξ=0

fa(ξ).

For example, consider the flow in Figure 2.3 with value 8. It is not obvious that the value of
a flow over time is well-defined, hence we show the correctness in the next lemma.

Lemma 2.12. The value of a flow over time is well-defined.

Proof. We have to show that for any feasible b-flow over time f , the equality in Defini-
tion 2.11 holds. We have∑

v∈V

b(v) = 0 and
1
2

∑
v∈V

|b(v)| =
∑
v∈V

b(v)>0

b(v) =
∑
v∈V

b(v)<0

−b(v).

Since s ∈ V is the only node with b(s) > 0 and t1, . . . , th ∈ V are the only nodes with b(ti) < 0,
we derive that b(s) =

∑h
i=1−b(ti).

Due to the strict flow conservation constraint, we know that

value( f ) :=
∑

a∈δ+(s)

T∑
θ=0

fa(θ)−
∑

a∈δ−(s)

T∑
θ=0

fa(θ)

=
∑

a∈δ+(s)

T∑
θ=0

fa(θ)−
∑

a∈δ−(s)

T−τa∑
θ=0

fa(θ)−
∑

a∈δ−(s)

T∑
θ=T−τa+1

fa(θ)︸                   ︷︷                   ︸
=0

= b(s).
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Furthermore, it holds that

value( f ) =
h∑

i=1

∑
a∈δ−(ti)

T∑
θ=0

fa(θ)−
h∑

i=1

∑
a∈δ+(ti)

T∑
θ=0

fa(θ)

=

h∑
i=1

∑
a∈δ−(ti)

T−τa∑
θ=0

fa(θ)+
h∑

i=1

∑
a∈δ−(ti)

T∑
θ=T−τa+1

fa(θ)︸                        ︷︷                        ︸
=0

−

h∑
i=1

∑
a∈δ+(ti)

T∑
θ=0

fa(θ) =
h∑

i=1

−b(ti)

and thus the equality in Definition 2.11 follows. □

Lastly, we recapitulate the notion of residual networks for static flows as given in [Wil19].
They are needed briefly in Chapter 5. For this purpose, we define the reverse graph as the
graph that also contains the backward arc for any arc a ∈ A.

Definition 2.13 (Reverse Graph). For a network (G,u), the reverse graph is defined as
←→
G :=

(V,
←→
A ) with

←→
A := A∪

←−
A, where

←−
A := {(w,v) | (v,w) ∈ A}.

Not all backward arcs in a reverse graph are relevant. The residual graph contains only the
relevant backward arcs.

Definition 2.14 (Residual Graph). Given a network (G,u) and a static flow x, we define the
residual graph Gx := (V,Ax) as

Ax := {a ∈ A | u(a)− x(a) > 0} ∪ {(v,w) =←−a ∈
←−
A | x(w,v) > 0}.

The residual network contains the residual graph together with an adapted capacity function
and (possibly) an adapted cost function.

Definition 2.15 (Static Residual Network). Given a network (G,u) and a static flow x on
this network, then the residual network (G,u)x consists of the residual graph Gx = (V,Ax)
and the capacity function

ux : Ax→ N0, a 7→

u(a)− x(a), a ∈ A

x(a), a ∈
←−
A .

Given a cost network (G,u,c) and a flow x, then the residual network is (G,u,c)x consisting
of the residual graph Gx, the capacity function ux and the residual cost function

cx : Ax→ Z, a 7→

c(a), a ∈ A

−c(←−a ), a ∈
←−
A .

11
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Figure 2.4: Here, we have the same flow over time network as in Figure 2.2, but a new
balance function. In Figure 2.5 and Figure 2.6, there are two corresponding
flows over time.

2.2 Generalized Temporally Repeated Flows

In this section, we define some special types of flows over time. The temporally repeated
flow is quite common in the literature, whereas we introduce uniform, k-temporally repeated
and k-uniform flows.

A temporally repeated flow is constructed by using a static flow, decomposing this flow into
paths and sending along those paths as often as possible, hence as long as a unit reaches the
end of the path before the time horizon is over.

Definition 2.16 (Temporally Repeated Flow, [GKL+18], [Ham89]). Let x be a feasible
static flow over a network (G,u, τ) and y : P→ R≥0 a corresponding path decomposition.

Then, the associated temporally repeated flow f with time horizon T is a flow over time
defined as

fa(θ) :=
∑

p∈Pa(θ)

y(p) ∀a ∈ A, θ ∈ {0, . . . ,T },

where Pa(θ) := {p ∈ P | a ∈ p, τ(p[s,v]) ≤ θ, τ(p[w,t]) ≤ T − θ} for a = (v,w) and p = (s, . . . , t).
We set fa(θ) := 0 for θ < {0, . . . ,T }.

Figure 2.5 shows an example of a temporally repeated flow on the network depicted in
Figure 2.4. In the next lemma, we show that a temporally repeated flow is indeed a feasible
flow over time.

Lemma 2.17. A temporally repeated flow f with time horizon T is a feasible flow over time.

Proof. We show that the constructed flow f satisfies the capacity constraint, flow comple-
tion, the weak flow conservation, and the strict flow conservation.

• Since y is a path decomposition of a static flow on the network (G,u, τ) which satisfies
the capacity constraint, it holds that

fa(θ) =
∑

p∈Pa(θ)

y(p) ≤
∑
p∈P,
a∈P

y(p) = x(a) ≤ u(a)

12
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Figure 2.5: A temporally repeated flow on the network given in Figure 2.4 with time horizon
7. Again, points in time are on the x-axis and the nodes on the y-axis. This flow
is sent along two different paths, where one path has a total transit time of 4 and
the other one has a total transit time of 6. Units can be sent via the shorter path
four times, but only two times via the longer path.

for all a ∈ A, θ ∈ {0, . . . ,T }. Hence, the capacity constraint is fulfilled.

• For a ∈ A and θ > T −τa, we obtain

fa(θ) =
∑

p∈Pa(θ)

y(p) = 0,

since Pa(θ) = ∅ if θ > T −τa. Thus, the flow completion constraint is satisfied.

• The flow over time is defined via paths from the source to the sinks, hence we can
define a corresponding balance function b and the weak and strict flow conservation
constraints hold accordingly. This can be easily verified.

Hence, a temporally repeated flow is a feasible flow over time. □

The following special type of a flow over time is inspired by the figures in [Ham89]. The
flows in the figures are similar to temporally repeated flows with the difference that each
path is repeated the same number of times (see Figure 2.6 for an example).

Definition 2.18 (Uniform Flow). Let x be a feasible static flow over a network (G,u, τ) and
y : P→ R≥0 a corresponding path decomposition. Furthermore, we set t :=maxp∈P τ(p).

Then, the associated uniform flow f with time horizon T is a flow over time defined as

fa(θ) :=
∑

p∈Pa(θ)

y(p) ∀a ∈ A, θ ∈ {0, . . . ,T },

where Pa(θ) := {p ∈ P | a ∈ p, 0 ≤ θ−τ(p[s,v]) ≤ T − t} for a = (v,w) and p = (s, . . . , t). We set
fa(θ) := 0 for θ < {0, . . . ,T }.

13



0 1 2 3 4 5 6 7 8

s

v1

v2

t1

t2

4 4 4

2 2 2
2 2 2

2 2 2

Figure 2.6: A uniform flow on the network given in Figure 2.4 with time horizon 8. The
flow is sent along two different paths, where flow is sent along each path the
same number of times.

A uniform flow is called uniform, since the amount of the new supply is uniform for all
points in time where flow is sent from the sink. In Figure 2.6, there is repeatedly a new
supply of 4 units in the first time period and then no new supply afterward. We call each
point in time when we send flow from the sink along a path an iteration and the flow in the
example has 3 iterations.

Compared to a temporally repeated flow, a uniform flow is even more intuitive for most
humans, since units are sent along all paths the same number of times.

In the rest of this work, we consider a weakened definition of uniform flows where the
supply in the last iteration may be smaller (but not zero) for each path. This allows us to
find uniform flows for a larger set of balance functions.

Lemma 2.19. A uniform flow f with time horizon T is a feasible flow over time.

A uniform flow with time horizon T is very similar to the temporally repeated flow with the
same time horizon created from the same static flow.

Proof. The proof of the feasibility is very similar to the proof of Lemma 2.17 and can be
verified analogously. □

When comparing the flows in Figures 2.5 and 2.6, we can see that the uniform flow needs
at least the same time horizon as the temporally repeated flow to fulfill the same demands
given by the balance function, if both flows are created from the same static flow. This holds
in general, but the proof is left to the reader.

We may merge two temporally repeated (resp. uniform) flows to create a new temporally
repeated (resp. uniform) flow by executing both flows simultaneously.

14



Definition 2.20 (Merge Flows). For two flows f , f ′ on the same network (G,u, τ) with time
horizon T , merging them results in a new flow f ′′ defined as

f ′′a (θ) := fa(θ)+ f ′a(θ) ∀a ∈ A, θ ∈ {0, . . . ,T }.

Merging two flows only results in a feasible flow if the addition of the flows does not violate
the capacity constraint. If both flows f and f ′ are temporally repeated (resp. uniform) flows,
then the resulting flow is also temporally repeated (resp. uniform if the number of iterations
is equal).

We may also combine two temporally repeated (resp. uniform) flows to create a new flow
over time by executing both flows consecutively.

Definition 2.21 (Combine Flows). For two flows f , f ′ on the same network (G,u, τ) with
time horizons T and T ′, combining them results in a new flow f ′′ defined as

f ′′a (θ) :=

 fa(θ), θ ≤ T,
f ′a(θ−T ), θ > T,

for all a ∈ A, θ ∈ {0, . . . ,T +T ′}.

Again, the resulting flow does not need to be feasible. Furthermore, if both flows f , f ′ are
temporally repeated (resp. uniform) this does not necessarily imply that the resulting flow is
also temporally repeated (resp. uniform). If the flow is feasible, we call the two flows f , f ′

subflows.

In the rest of this section, we define k-temporally repeated and k-uniform flows which com-
bine multiple temporally repeated (resp. uniform) flows. If we use the previously defined
combination, then the sum of the time horizons of the individual flows is the time horizon
of the combined flow. However, we generally search for quick flows (hence flows with min-
imal time horizon, see Chapter 3) and therefore we start by identifying how to combine two
temporally repeated (resp. uniform) flows more efficiently.

For two flows over time, we want to start the second flow as early as possible. Hence, we
want to find the earliest point in time such that the capacity constraint remains fulfilled.
Since we also want to combine multiple flows, it is convenient to specify an earliest starting
time for the second flow and ensure that an eventually added third flow cannot overlap with
the first flow. Last but not least, we actually want to combine the two flows one after the
other, hence we specify that the second flow can start only during the last phase of the first
flow (when units are not sent along all paths anymore). To that end, we define a function
that calculates at what time the second flow should start (at latest after the end of the first
flow, possibly a bit earlier).

Definition 2.22 (Delay). Let f , f ′ be temporally repeated resp. uniform flows over time over
the same network (G,u, τ). Suppose that f has time horizon T , the underlying static flow
has path decomposition y f : P f → R≥0, and t := maxp∈P f τ(p) is the maximal path length

15
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Figure 2.7: Again, we have the same flow over time network (G,u, τ) as in Figure 2.3 with
a new balance function b. In contrast to the balance function in Figure 2.4, the
demand is now greater than 0 for both nodes t1 and t2.

(compare with Definition 2.18). The flow f ′ has the time horizon T ′, the path decomposition
y′f : P′f → R≥0 and the maximal path length t′ :=maxp∈P f ′ τ(p).

Then, we define a function

delay( f , f ′) :=min{ θ ∈ {−t+1, . . . ,0} | T ′+ θ > t′ and
fa(T +ρ)+ f ′a(ρ− θ) ≤ u(a) ∀a ∈ A, θ ≤ ρ ≤ 0 }.

A k-temporally repeated flow consists of k temporally repeated flows that are combined
using the time delay as specified above. Take a look at Figure 2.8 for an example.

Definition 2.23 (k-Temporally Repeated Flow). Let f 1, . . . , f k be temporally repeated flows
over the same network (G,u, τ) with time horizons T1, . . . ,Tk. Then, we define 2 · k points in
time:

1T := 0 ∈ N0,
iT := T i−1+delay( f i−1, f i)

T 1 := T1 ∈ N0,

T i := iT +Ti ∈ N0, for 1 < i ≤ k.

Furthermore, we assume that Pi
a(θ) is the set Pa(θ) for the temporally repeated flow f i (as

in Definition 2.16). Then, we define a k-temporally repeated flow F as a family of functions
fa : {0, . . . ,T k} → R≥0, a ∈ A, with

fa(θ) :=
∑

1≤i≤k,
if θ∈{iT,...,T i}

f i
a(θ− iT ) ∀a ∈ A, θ ∈ {0, . . . ,T k}.

Again, we call the flows f 1, . . . , f k subflows of the resulting k-temporally repeated flow f .

Example 2.24. In Figure 2.8, it holds for the first flow f that t f = 6 and for the second
flow f ′ that t f ′ = 4. Furthermore, the time horizons are T f = 6 and T f ′ = 8. To avoid any
overlapping with a potential third flow, the inequality T f ′ + θ > t f ′ must be satisfied, hence
θ > t f ′ − T f ′ = 4− 8 = −4 and the earliest possible starting time is T f − θ = 6− 3 = 3 for
θ = −3. Since the capacity constraints are valid for this starting time and −t f = −6 ≤ −3 ≤ 1,
the calculated starting time is indeed 3.
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Figure 2.8: A 2-temporally repeated flow for the network and balances given in Figure 2.7
with time horizon 11. The first flow is the temporally repeated flow from Fig-
ure 2.5 and the second flow fulfills the additional demand of the sink t2.

A k-uniform flow is defined similarly to a k-temporally repeated flow. Figure 2.9 contains
an example, where we can also see the application of the function delay.

Definition 2.25 (k-Uniform Flow). Let f 1, . . . , f k be uniform flows over the same network
(G,u, τ) with time horizons T1, . . . ,Tk. Then we define 2 · k points in time:

1T := 0 ∈ N0,
iT := T i−1+delay( f i−1, f i)

T 1 := T0 ∈ N0,

T i := iT +Ti ∈ N0, for 1 < i ≤ k.

Furthermore, we assume that Pi
a(θ) is the set Pa(θ) for the uniform flow f i (as in Defini-

tion 2.18). Then, we define a k-uniform flow f as a family of functions fa : {0, . . . ,T k}→R≥0,
a ∈ A, with

fa(θ) :=
∑

1≤i≤k,
if θ∈{iT,...,T i}

f i
a(θ− iT ) ∀a ∈ A, θ ∈ {0, . . . ,T k}.

The definitions of k-temporally repeated and k-uniform flows enable us to talk about flows
over time which have a structure that is more refined than the structure of temporally re-
peated and uniform flows. Again, the structure implies simplicity and e.g. makes the flows
easier to remember by humans. On the other hand, the refined structure might yield better
results that the temporally repeated and uniform flows considering the problems given in
Chapter 3.

Lemma 2.26. A k-temporally repeated resp. k-uniform flow f with time horizon T is a
feasible flow over time.

Proof. We show that the constructed k-temporally repeated flow f satisfies the constraints
and consider the feasible, temporally repeated flows f 1, . . . , f k over the same network (G,u, τ).
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Figure 2.9: A 2-uniform flow for the network and balances given in Figure 2.7 with time
horizon 11. The first flow is the uniform flow from Figure 2.6 and the second
flow fulfills the additional demand of the sink t2.

• Each of the flows f 1, . . . , f k is feasible and satisfies the capacity constraint. Hence,
we only need to consider the points in time θ ∈ {0, . . . ,T k}, where θ ∈ {i−1T, . . . ,T i−1}∩

{iT, . . . ,T i} for 1 < i ≤ k. Then, it follows that θ ∈ {T i−1+delay( f i−1, . . . , f i),T i−1} and
the definition of delay guarantees that the capacity constraint is fulfilled.

• Since f k is a feasible flow, it holds that fa(θ) = 0 for all a ∈ A and θ > T −τa.

• The weak and strict flow conservation follow analogously since they hold for each
subflow.

Hence, the k-temporally repeated flow is feasible. The feasibility of the k-uniform flow can
by shown similarly. □

2.3 Equivalent Definitions of Flows over Time

In this section, we look at a definition for flows over time with integrals and show that
the definition is loosely equivalent to our previous definition of flows over discrete time
(see Definition 2.9). We start by defining continuous flows over time for networks with
intermediate storage. The following definition is taken from [FS03] and translated such that
it uses our notation.

Definition 2.27 (Continuous Flow Over Time). For a flow over time network (G,u, τ), a
time horizon T ∈ N0, and a balance function b, a feasible continuous b-flow over time is a
family of Lebesgue-measurable functions fa : R→ R≥0, a ∈ A, which satisfies

1. the capacity constraint

0 ≤ fa(θ) ≤ u(a) ∀a ∈ A, θ ∈ [0,T ),

2. the flow completion fa(θ) = 0 for all a ∈ A and θ > T −τa,
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3. the weak flow conservation for all v ∈ V \ {s} and θ ∈ [0,T )∫ θ

0

 ∑
a∈δ−(v)

fa(ξ−τa)−
∑

a∈δ+(v)

fa(ξ)

 dξ ≥ 0,

4. and the strict flow conservation for all ∀v ∈ V∫ T

0

 ∑
a∈δ−(v)

fa(θ−τa)−
∑

a∈δ+(v)

fa(θ)

 dθ = −b(v).

Furthermore, fa(θ) = 0 for θ < [0,T ).

For a flow over time network (G,u, τ), a balance function b and a time horizon T , we define
Fcont(G,u, τ,b,T ) as the set of all feasible continuous flows over time.

For a given flow over time network, we can now map each feasible continuous flow over
time for a time horizon T +1 to a corresponding feasible discrete flow over time for a time
horizon T (as defined in Definition 2.9).

Lemma 2.28. Let (G,u, τ) be a flow over time network, b a balance function and T a time
horizon. Each feasible continuous b-flow over time f with time horizon T +1 can be mapped
to a feasible discrete b-flow over time f ′ with time horizon T via the surjective function

Θ : Fcont(G,u, τ,b,T +1)→F (G,u, τ,b,T ), f 7→ f ′,

where f ′a(θ) :=

θ+1∫
θ

fa(ξ) dξ ∀a ∈ A, θ ∈ Z.

Proof. We show that the mapping is well-defined by proving that f ′ := Θ( f ) is a feasible
discrete flow over time with time horizon T for any feasible continuous flow over time
f ∈ Fcont(G,u, τ,b,T +1). We check the constraints on discrete flows over time.

1. Since f is feasible, the capacity constraint holds and 0 ≤ fa(ρ) ≤ u(a) for all a ∈ A and
ρ ∈ [0,T +1). Hence, for all a ∈ A and θ ∈ {0, . . . ,T }

0 ≤ f ′a(θ) =

θ+1∫
θ

fa(ξ) dξ ≤

θ+1∫
θ

u(a) dξ = u(a)

and the capacity constraint holds for f ′.

2. Let a ∈ A and θ ∈ {0, . . . ,T }with θ > T −τa. Then f ′a(θ)=
θ+1∫
θ

fa(ξ) dξ = 0 since fa(ρ)= 0

for ρ ∈ [0,T +1) with ρ ≥ θ ≥ T −τa.
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3. The weak flow conservation for continuous flows over time implies for all v ∈ V \ {s}
and θ ∈ {0, . . . ,T } that

0 ≤
∫ θ+1

0

 ∑
a∈δ−(v)

fa(ξ−τa)−
∑

a∈δ+(v)

fa(ξ)

 dξ

=
∑

a∈δ−(v)

∫ θ+1

0
fa(ξ−τa) dξ−

∑
a∈δ+(v)

∫ θ+1

0
fa(ξ) dξ

=
∑

a∈δ−(v)

θ∑
i=0

∫ i+1

i
fa(ξ−τa) dξ−

∑
a∈δ+(v)

θ∑
i=0

∫ i+1

i
fa(ξ) dξ

=
∑

a∈δ−(v)

θ−τa∑
i=0

∫ i+1

i
fa(ξ) dξ−

∑
a∈δ+(v)

θ∑
i=0

∫ i+1

i
fa(ξ) dξ

=
∑

a∈δ−(v)

θ−τa∑
i=0

f ′a(i)−
∑

a∈δ+(v)

θ∑
i=0

f ′a(i).

Thus, the weak flow conservation holds for the discrete flow over time f ′.

4. Lastly, we show that the strict flow conservation for the continuous flow over time f
implies the analogous constraint for the discrete flow over time f ′. It holds that

−b(v) =
∫ T+1

0

 ∑
a∈δ−(v)

fa(θ−τa)−
∑

a∈δ+(v)

fa(θ)

 dθ

=
∑

a∈δ−(v)

∫ T+1

0
fa(θ−τa) dθ−

∑
a∈δ+(v)

∫ T+1

0
fa(θ) dθ

=
∑

a∈δ−(v)

T∑
i=0

∫ i+1

i
fa(θ−τa) dθ−

∑
a∈δ+(v)

T∑
i=0

∫ i+1

i
fa(θ) dθ

=
∑

a∈δ−(v)

T−τa∑
i=0

∫ i+1

i
fa(θ) dθ−

∑
a∈δ+(v)

T∑
i=0

∫ i+1

i
fa(θ) dθ

=
∑

a∈δ−(v)

T−τa∑
i=0

f ′a(i)−
∑

a∈δ+(v)

T∑
i=0

f ′a(i)

for v ∈ V .

It holds that f ′a(θ) = 0 for θ ∈ Z \ {0, . . . ,T }. Hence, we have shown that f ′ is a feasible
discrete flow over time for the time horizon T and the function Θ is well-defined.

Let f ′ ∈ F (G,u, τ,b,T ) be a discrete flow over time for the time horizon T . Then, we can
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construct a continuous flow over time f for the time horizon T +1 as

fa(ρ) := f ′a(⌊ρ⌋) ∀a ∈ A, ρ ∈ [0,T +1),

where ⌊ρ⌋ ∈ N0 is the largest integer value smaller than ρ. This flow over time is feasible
since the Lebesgue integral is well-defined for piecewise linear functions [Fol99]. Further-
more, Θ( f ) = f ′ and thus Θ is surjective. □
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3 Quickest Transshipment and
Related Problems

In this chapter, we state common problems on static flows and flows over time such as the
Min Cost Flow Problem, the Max Flow over Time Problem and the Quickest Transshipment
Problem. Then, we show the special relation between the Quickest Transshipment Problem
and the Min Cost Flow over Time Problem and reduce the first problem onto the second one.
Last but not least, we analyse which problems have integer optimal solutions and which do
not. We observe that most problems are not integer anymore if the set of feasible solutions
is restricted to temporally repeated or uniform flows.

3.1 Problem Formulations

On the next pages, we give an overview of the common questions and problems that arise
while analyzing different kinds of flows.

Considering static flows, we may be interested in the maximal amount of flow that can be
sent from one node to another node in the network.

Definition 3.1 (Max Flow Problem, [FJF62]). Given

• a flow network (G,u),

• a source s ∈ V and a sink t ∈ V,

find a balance function b and a static b-flow x such that b(v) = 0 for all v ∈ V \ {s, t} and
1
2
∑

v∈V b(v) is maximal.

Furthermore, we might specify the supply and demand of all nodes via a balance function
and search for a flow that fulfills the balance function with minimal costs.

Definition 3.2 (Min Cost Flow Problem, [FJF62]). Given

• a flow network (G,u,c)

• and a balance function b,

find a static b-flow x with minimal costs c(x) :=
∑

a∈A c(a) · x(a).

On flow over time networks, we can consider the previous problems in an adapted form. We
may be interested in the maximal amount of flow that can be sent from one node to another
node in the network over a given time horizon.
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Definition 3.3 (Max Flow over Time Problem, [FJF58]). Given

• a flow over time network (G,u, τ),

• a source s ∈ V and a sink t ∈ V,

• and a time horizon T ∈ N0,

find a balance function b and a b-flow over time f with time horizon T such that b(v) = 0
for all v ∈ V \ {s, t} and 1

2
∑

v∈V b(v) is maximal.

Example 3.4. If a flow over time network models the pathways in a hospital, then the Max
Flow over Time Problem can be used to analyze the maximal amount of beds that may be
transported from the main depot to a station in a given time horizon.

Also, we might specify the supply and demand of all nodes via a balance function and search
for a flow that fulfills the balance function with minimal costs over a given time horizon.

Definition 3.5 (Min Cost Flow over Time Problem, [KW04]). Given

• a flow over time network with costs (G,u, τ,c),

• a balance function b,

• and a time horizon T ∈ N0,

find a b-flow over time f with time horizon T and minimal costs

c( f ) :=
∑
a∈A

T∑
θ=0

c(a) · fa(θ).

Example 3.6. Given a flow over time network as in the previous example, we define the cost
function c such that it equals the transit times τ for all arcs. Then, the result of the Min
Cost Flow over Time Problem for a balance function and a time horizon minimizes the total
transit times for all beds. If each bed has to be pushed by the same number of persons, then
this minimizes the total working time.

An earliest arrival flow satisfies the maximum possible demand at every point in time. This
implies that flow arrives as early as possible at the sinks in the network. The problem is
inspired by evacuation problems, where as many people as possible should reach exit points
(e.g. the exits of a building) as early as possible.

Definition 3.7 (Earliest Arrival Flow over Time Problem, [SS14]). Given

• a flow over time network (G,u, τ),

• a balance function b,

• and a time horizon T ∈ N0,

find a b-flow over time f with time horizon T such that value( f (θ)) is maximal for every
point in time θ ∈ {0, . . . ,T }.
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A related problem is the Quickest Transshipment Problem, which aims to find a flow over
time that satisfies a given balance function as fast as possible. Hence, the overall timespan
is minimized.

Definition 3.8 (Quickest Transshipment Problem, [Fle01]). Given

• a flow over time network (G,u, τ),

• a balance function b,

• and a time horizon T ∈ N0,

find a b-flow over time f with time horizon T such that θ ∈ {0, . . . ,T } with value( f (θ)) =
value( f ) is minimal.

A related problem is the Quickest Flow Problem, which resembles the Quickest Transship-
ment Problem but considers only one source and one sink, see [Fle01].

Example 3.9. Again, we consider a flow over time network which models a hospital. We
define a balance function such that it models the demand and supply of the main depot and
the stations. Then, the result of the Quickest Transshipment Problem minimizes the overall
time which is needed to transport all beds from the main depot to the station. This could be
helpful to minimize the time that the pathways need to be blocked for other processes.

All of the problems that we consider in the rest of this work resemble the problems that
we stated in this section. We might further specify the type of the solution (e.g. consider
only temporally repeated flows) or consider combinations of the problems (e.g. finding a
maximum flow with minimal costs), but the problems are always related to already defined
problems.

3.2 Reduction of the Quickest Transshipment to Min
Cost Flows over Time

In this section, we show that the Quickest Transshipment Problem can be reduced to the Min
Cost Flow Over Time Problem. This implies that finding an efficient algorithm for solving
the Min Cost Flow Over Time Problem enables us to efficiently calculate solutions of the
Quickest Transshipment Problem.

Theorem 3.10. There exists a Turing reduction from the Quickest Transshipment Problem
to the Min Cost Flow Over Time Problem.

Proof. Let N be an instance of the Quickest Transshipment Problem consisting of a flow
over time network (G,u, τ), a balance function b, and a time horizon T ∈N0. We aim to find
a b-flow over time f such that all demands are fulfilled as early as possible.
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Calculate a solution. We define an instance NT ′ of the Min Cost Flow Over Time Prob-
lem by specifying a cost function c : V → N0,v 7→ 0 and a flow over time network with
costs (G,u, τ,c). Additionally, the same balance function b is used and the time horizon is
indicated by T ′ ∈ N0.

We calculate an upper bound Tmax ∈ N0 for the time horizon of the optimal solution of the
instance N. Therefore, we compute the shortest paths p1, . . . , ph (concerning the transit time)
from the source s ∈ V to each sink ti ∈ V , 1 ≤ i ≤ h. The sum of the transit times for all those
paths

∑
1≤i≤h τ(pi) multiplied by the number of demand 1

2
∑

v∈V |b(v)| yields such an upper
bound Tmax.

Now, we can check for every time horizon T ′ ∈ {0, . . . ,Tmax} whether a solution for the
instance NT ′ of the Min Cost Flow Over Time Problem exists. Let T ∗ ∈ {0, . . . ,Tmax} be
minimal such that there exists a solution for the instance NT ∗ . Then, the solution of NT ∗ is
an optimal solution for the instance N of the Quickest Transshipment Problem.

The solution is optimal. Any solution of the instance NT ∗ is a b-flow over time f ∗ over time
horizon T ∗. Hence, it is also a feasible solution of the instance N.

Assume that the solution is not optimal. Then, there exists a b-flow over time f with a
smaller time horizon T < T ∗. Hence, the flow f is also a solution of the instance NT and we
have a contradiction. □

If there exists a solution for the instance NT , T ∈ {0, . . . ,Tmax}, then every instance NT ′ with
T ′ ≥ T also has a solution. Hence, we can find the smallest time horizon T ∗ ∈ N0 via a
binary search through the interval [0,Tmax] by checking whether there exist solutions for
the respective instances.

A different perspective on the reduction The Min Cost Flow Over Time Problem can
be written as the linear program LPMin Cost

min
∑
a∈A

T∑
θ=0

ca f θa

s.t. 0 ≤ f θa ≤ ua a ∈ A, θ ∈ {0, . . . ,T },

f θa = 0 a ∈ a, θ ∈ {T −τa+1, . . . ,T },∑
a∈δ−(v)

θ−τa∑
ξ=0

f ξa −
∑

a∈δ+(v)

θ∑
ξ=0

f ξa ≥ 0 v ∈ V \ {s}, θ ∈ {0, . . . ,T },

∑
a∈δ−(v)

T−τa∑
ξ=0

f ξa −
∑

a∈δ+(v)

T∑
ξ=0

f ξa = −b(v) v ∈ V,

f θa ∈ Z≥0 a ∈ A, θ ∈ {0, . . . ,T },
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for a given time horizon T ∈ N0. The flow over time f which solves the problem is fully
specified via the decision variables f θa for a ∈ A and θ ∈ {0, . . . ,T }. The constraints guarantee
that the solution is a feasible b-flow over time.

Furthermore, the following linear program LPQuickest represents the Quickest Transshipment
Problem:

min
T∑
θ=0

yθ

s.t. 0 ≤ f θa ≤ ua a ∈ A, θ ∈ {0, . . . ,T },

f θa = 0 a ∈ A, θ ∈ {T −τa+1, . . . ,T },

∑
a∈δ−(v)

θ−τa∑
ξ=0

f ξa −
∑

a∈δ+(v)

θ∑
ξ=0

f ξa ≥ 0 v ∈ V \ {s}, θ ∈ {0, . . . ,T },

∑
a∈δ−(v)

T−τa∑
ξ=0

f ξa −
∑

a∈δ+(v)

T∑
ξ=0

f ξa = −b(v) v ∈ V,

yθ ≥ yθ+1 θ ∈ {0, . . . ,T },

f θa ≤ M · yθ a ∈ A, θ ∈ {0, . . . ,T },

f θa ∈ Z≥0 a ∈ A, θ ∈ {0, . . . ,T },
yθ ∈ {0,1} θ ∈ {0, . . . ,T }.

Here, M ∈ N0 is a very large number and might e.g. be set to 1
2
∑

v∈V |b(v)|. Via the decision
variables yθ, θ ∈ [0,T ], we ensure that there is no flow after a certain point in time. This
point is as early as possible due to the objective function.

A different way to prove Theorem 3.10 is by looking at the LP formulations of the two
problems. We make the following observation: Suppose that we fix the decision variables
yθ, θ ∈ [0,T ], such that there exists a point in time T ∗ ∈ N0 with yθ = 1 for θ ≤ T ∗ and yθ = 0
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for θ > T ∗. Then, the linear program LPQuickest is reduced to

min T ∗

s.t. 0 ≤ f θa ≤ ua a ∈ A, θ ∈ {0, . . . ,T },

f θa = 0 a ∈ A, θ ∈ {T −τa+1, . . . ,T }

∑
a∈δ−(v)

θ−τa∑
ξ=0

f ξa −
∑

a∈δ+(v)

θ∑
ξ=0

f ξa ≥ 0 v ∈ V \ {s}, θ ∈ {0, . . . ,T },

∑
a∈δ−(v)

T−τa∑
ξ=0

f ξa −
∑

a∈δ+(v)

T∑
ξ=0

f ξa = −b(v) v ∈ V,

f θa = 0 θ ∈ {T ∗+1, . . . ,T },

f θa ∈ Z≥0 a ∈ A, θ ∈ {0, . . . ,T }.

Since the variable T ∗ is fixed, this new formulation resembles the LPMin Cost with the new
time horizon T ∗ and costs set to 0 (where an arbitrary but fixed number is added to the
objective function). Hence, a solution for the linear program LPQuickest with timespan T ∗

exists, if a feasible solution for the corresponding LPMin Cost with time horizon T ∗ exists.
This can be checked for any T ∗ ∈ {0, . . . ,T }.

3.3 Integrality

In this section, we want to analyze the solution sets of the proposed problems and establish
whether there exist integer optimal solutions. For now, we consider networks with a single
source and a single sink. We give the following definition to explain the underlying theory.

Definition 3.11 (Totally Unimodular Matix). A matrix A ∈ Zn×m is totally unimodular if
every square submatrix of A has determinant −1,0, or 1.

We state the following fundamental result:

Theorem 3.12 ([Sch98]). If A ∈ Zn×m is a totally unimodular matrix and b ∈ Zm an integer
vector then the polyhedron P := {x | Ax ≤ b} is integer.

A polyhedron is integer if all corner points are integer, meaning that for any objective func-
tion represented by the vector b ∈ Zm, there exists an integer optimal solution.

It is well-known that static flow networks with integer capacities and costs have integer
optimal solutions for objective functions represented by integer vectors (since the matrices
of the corresponding linear programs are totally unimodular, [Sch98]).

Theorem 3.13 ([Sch98]). The Max Flow Problem and the Min Cost Flow Problem are
integer.
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Hence, for both problems there always exists an integer optimal solution.

Suppose that we are given a flow over time network (G,u, τ,c). Due to the definitions in
Chapter 2, the capacities, transit times, and costs are always integer. We can construct a
time-expanded flow network and solve the given problem on this larger network. A time-
expanded flow network contains T +1 copies of the original network into layers. The time
progress is represented via moving from a lower layer to an upper layer.

Definition 3.14 (Time-Expanded Flow Network, [Sku09]). Given a flow over time network
(G,u, τ) and a time horizon T , we define a so-called time-expanded flow network (GT ,uT )
in the following way:

• We specify the graph GT := (VT ,ET ) as

VT := {vθ | v ∈ V, θ = {0, . . . ,T }}.

Now we have a copy of every node for each discrete point in time. Next, we define
hold-over arcs (allowing the flow to stay at a node for several points in time) and
transition arcs (representing the transition from one node to another node with the
corresponding transit time) as

AT := {(vθ,vθ+1) | θ ∈ {0, . . . ,T −1}} ∪ {(vθ,wθ+τ(v,w)) | (v,w) ∈ A}.

• We define a capacity function uT : AT → N0∪∞ with

(vθ,vθ+1) 7→∞ for v ∈V, θ ∈ {0, . . . ,T −1} and (vθ,wθ+τ(v,w)) 7→ u(v,w) for (v,w) ∈ A.

If a cost function c : A→ N0 is given, then we define a corresponding cost function cT :
AT → N0 with

(vθ,vθ+1) 7→ 0 for v ∈ V, θ ∈ {0, . . . ,T −1} and (vθ,wθ+τ(v,w)) 7→ c(v,w) for (v,w) ∈ A.

Time-expanded flow networks are static networks and hence the Max Flow and Min Cost
Flow Problems on those networks are integer for integer capacities and costs.

Theorem 3.15 ([Sku09]). Let (G,u, τ) be a flow over time network, T a time horizon and
(GT ,uT ) the corresponding time-expanded network. For every flow over time f in (G,u, τ),
there exists a corresponding static flow x in (GT ,uT ) and vice versa. It holds that c( f ) = c(x)
and value( f ) = value(x).

The transformation from a flow over time f into a static flow x in the time-expanded network
is very straightforward: If a unit of flow transitions via an arc (v,w) ∈ A in the flow over time
network, then it transitions via the associated transition arc in the time-expanded network.
If a unit of flow stays at a node v ∈ V in the flow over time network for a time unit, then
it transitions via a hold-over arc in the time-expanded network. The formal proof of the
previous theorem can be found in [Sku09].
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Corollary 3.16. A flow f in (G,u, τ) is maximal if and only if the corresponding flow x in
(GT ,uT ) is maximal.

Corollary 3.17. Let (G,u, τ) be a network, s ∈ V a source, t ∈ V a sink, and b a balance
function such that b(v) = 0 for all v ∈ V \ {s, t}. Furthermore, we have (GT ,uT ), a source
s0 ∈ V, a sink tT ∈ V, and a balance function bT with bT (v) = 0 for all v ∈ VT \ {s0, tT }.

Then, a b-flow f in (G,u, τ) has minimal costs if and only if the corresponding bT -flow x in
(GT ,uT ) has minimal costs.

The statements in the previous both corollaries follow directly via Theorem 3.15.

Now, we show that the dynamic versions of the maximal flow and minimal cost flow prob-
lems are also integer.

Theorem 3.18. Let (G,u, τ) be a flow over time network with a time horizon T . Then, the
Max Flow over Time Problem is integer.

Proof. We can find a solution of the maximal flow problem on the associated time-expanded
network (GT ,uT ). Since the maximal flow problem is integer for static networks, there
exists an integer optimal solution in the (GT ,uT ) and hence also an integer optimal flow
over time. □

Theorem 3.19. Let (G,u, τ) be a flow over time network with a time horizon T . Then, the
Min Cost Flow over Time Problem is integer.

Proof. The proof is similar to the proof of Theorem 3.18. □

L.R. Ford and D.R. Fulkerson have shown that the Max Flow over Time Problem over any
network with a single source and a single sink has a temporally repeated optimal solution
[FJF58]. We derive the following statement.

Theorem 3.20. Let (G,u, τ) be a flow over time network with a time horizon T , a source
s ∈V, and a sink t ∈V. Then, the problem of finding a temporally repeated flow with maximal
value is integer.

Proof. Let (G,u, τ) be a flow over time network, T a time horizon, and s, t ∈V the source and
the sink. Then, we can calculate an optimal solution of the Max Flow over Time Problem
via the algorithm stated in [FJF58]. It calculates a temporally repeated flow with maximal
value and hence, the theorem is correct. □

If we consider the general problem of finding a maximal temporally repeated flow with
multiple sinks, then this problem is not integer.

Theorem 3.21. Let (G,u, τ) be a flow over time network with a time horizon T , a source
s ∈ V, and a list of sinks t1, . . . , th ∈ V. Then, the problem of finding a maximal temporally
repeated flow, which sends the flow to more than one sink, is not integer.
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Figure 3.1: A flow network (G,u, τ) with labels (u, τ) and balances b, and the only maximal
temporally repeated flow for time horizon T = 3. The flow is not integer.

Proof. Assuming that the problem is integer, there would exist an integer temporally re-
peated flow for the flow over time network (G,u, τ) described in Figure 3.1 which is also
a maximal temporally repeated flow. But for the given time horizon 3, there exists exactly
one temporally repeated solution. The solution is not integer and hence the problem is also
not integer. □

Furthermore, the following problems are also not integer.

Corollary 3.22. For a flow over time network (G,u, τ) with a time horizon T , the following
problems are also not integer:

• The Min Cost Flow Problem for temporally repeated flows.

• The Quickest Transshipment Problem for temporally repeated flows.

• The Max Flow Problem, the Min Cost Problem, and the Quickest Transshipment Prob-
lem for uniform flows.

Proof. • Assume that the network in Figure 3.1 is extended by a cost function c and
the costs resemble the transit times. For the given demand and time horizon T = 3,
the only temporally repeated solution is the flow in Figure 3.1. Hence, the problem of
finding a minimal cost temporally repeated flow is not integer.

• The quickest transshipment problem can be reduced to finding the smallest time hori-
zon T such that the maximal flow satisfies the balances. For the network in Figure 3.1,
the smallest time horizon is T = 3, which has only one solution. The solution is not
integer and hence this is a counter-example.

• In all of the above cases, we can replace the notion of temporally repeated flows by
uniform flows and the equivalent results follow.

Thus, the common problems are not integer if we restrict the set of feasible solutions to
temporally repeated or uniform flows. □
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4 Quickest Transshipment on Trees

In this chapter, we discuss flows over time on networks (G,u, τ), where the underlying graph
is a tree. The root node s ∈ V is the only source and the leaves t1, . . . , th ∈ V are the only
sinks. Figure 4.1 contains an example of such a tree network.

In the following, we analyze different approaches to solve the following problem:

Definition 4.1 (Quickest Transshipment On Trees). Given

• a tree network (G,u, τ),

• and a balance function b,

find an integer k-uniform flow with arbitrary k ≤ h which satisfies the balances and has
minimal overall time horizon T ∈ N.

In the first section of this chapter, we look at an algorithm that creates an h-uniform flow
where every subflow fills exactly one sink. We enhance the algorithm such that it finds better
solutions containing subflows that might fill more than one sink.

Then, we define almost-binary tree networks as networks where the underlying tree graph
has a certain structure. We show that each tree network can be transformed into an equiva-
lent almost-binary tree network. This justifies the focus on almost-binary tree networks in
subsequent sections.

Next, we analyze small almost-binary tree networks and calculate optimal solutions for the
Quickest Transshipment on Trees Problem on those networks. Additionally, we give an
intuition on why the calculation of optimal solutions for larger tree networks is hard.

Last but not least, we give an integer linear program for finding an optimal uniform flow
and consider its linear relaxation. Then, we state an algorithm that computes an integer
k-uniform solution of the problem defined above from the solution of the relaxed linear
program.

4.1 Naive Algorithm

Since the network is a tree, a feasible, but usually non-optimal solution would be an h-
uniform subflow, where each uniform flow serves the demand of exactly one sink. For the
network in Figure 4.1, we could start by filling sink t3, then fill sink t2 and end with sink t1.
A better solution would be to start filling the sink with the longest path first, then the sink
with the second-longest path, etc. This way, the path length of the long paths affects the
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Figure 4.1: A tree network (G,u, τ) where the labels represent (u, τ), and a balance function
b. Here, p1 = (s,v1,v2, t1) is the path from the source s to the sink t1. It has
length τ(p1) = 9 and u(1) = 5.
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Figure 4.2: A feasible solution for the Quickest Transshipment Problem on the network in
Figure 4.1. The solution additionally satisfies the constraint that each subflow
fills exactly one sink. It starts by filling the sink with the shortest path.

overall time horizon as little as possible. Both possible solutions are depicted in Figure 4.2
and Figure 4.3.

Listing 4.1 contains a formalization of the described algorithm. There, pi represents the
unambiguous path from the source s to the sink ti, i ∈ {1, . . . ,h}. The algorithm computes
the path length to each sink, orders them in decreasing order and fills them in the obtained
order using uniform flows. We show that – under very limiting restrictions to the set of all
feasible solutions – the algorithm computes an optimal solution.

Note that in the following, we treat ti and i as synonyms and often write b(i) instead of b(ti)
and τ(i) instead of τ(pi). Furthermore, we define u(i) :=mina∈pi u(a) as the limiting capacity
on the path from the source to the sink ti.

Lemma 4.2. Let (G,u, τ) be a tree network and b a balance function. Under all h-uniform
flows which fulfill the demand of exactly one sink in each subflow, the flow computed by the
algorithm in Listing 4.1 has minimal time horizon.

Proof. We show that the optimal solution is a combination of the quickest uniform flows
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Figure 4.3: Another feasible solution for the Quickest Transshipment Problem on the net-
work in Figure 4.1. This solution also satisfies the constraint that each subflow
fills exactly one sink, but it fills the sinks in descending order regarding their
path length. This solution has a significantly smaller time horizon than the solu-
tion depicted in Figure 4.2.

Listing 4.1: One Sink per Uniform Flow
1 Input: Tree network (G,u, τ) and balance function b
2 Output: h-uniform flow f which fulfills
3 exactly one sink per subflow
4

5 Calculate path length τ(pi) with pi = (s, . . . , ti) for all i ∈ {1, . . . ,h}
6 Sort sinks such that τ(p1) ≥ τ(p2) ≥ . . . ≥ τ(ph)
7

8 Construct uniform flow fi for all i ∈ {1, . . . ,h}
9 which completely satisfies demand of sink ti

10 with minimal time horizon
11 Construct flow f by combining f1, . . . , fh
12

13 Return f
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that fill one sink each. Then, we express the time horizon of such a combination via a
formula and show that the time horizon is smallest for the combination calculated in the
algorithm.

Let fi be the uniform flow that fulfills the demand of sink ti in a minimal time horizon,
i ∈ {1, . . . ,h}. Each possible combination of the uniform flows, where each flow appears
exactly once, is a solution of the problem. Since we combine the subflows according to
Definition 2.22, the resulting h-uniform flow is feasible. Furthermore, it fulfills the demand
given in the balance function b. Since the network has a tree structure, the flow cannot
outrun the other flow (there are no cycles in the network) and hence the delay is always
exactly one time unit.

Any other solution of the problem has a longer time horizon than the optimal combination of
the flows f1, . . . , fh, since at least one of the subflows must have a non-optimal time horizon
and hence the time horizon of the combination is also non-optimal.

Suppose that the sinks t1, . . . , th are ordered such that τ(p1)≥ τ(p2)≥ . . .≥ τ(ph). We indicate
the combination of the subflows by the order of the sinks. Let (i1, . . . , ih) ⊆ {1, . . . ,h} be such
an ordering which represents a flow. Then, we can calculate the time horizon of this flow by
the following formula:

T (i1, . . . , ih) := max
ℓ∈{1,...,h}

{ ℓ∑
k=1

−b(ik)
u(ik)

+τ(iℓ)−1
}
.

For each subflow fiℓ , we calculate the number of iterations for the previously executed
subflows fi1 , . . . , fiℓ−1 and for the current subflow fiℓ and add the path length to the current
sink τ(iℓ) (minus one, since we started at time zero). The maximum is the total time horizon
of this combination.

The algorithm in Listing 4.1 calculates the flow represented by the tuple (1, . . . ,h).

Claim: The time horizon of the flow (1, . . . ,h) is smaller than the time horizon T (i1, . . . , ih)
for any other combination (i1, . . . , ih).

Suppose that T (i1, . . . , ih)=
∑ℓ′

k=1
−b(ik)
u(ik) +τ(iℓ′)−1 for ℓ′ ∈ {1, . . . ,h}. We show that T (1, . . . ,h)≤

T (i1, . . . , ih) by proving that

n∑
k=1

−b(k)
u(k)

+τ(n)−1 ≤
ℓ′∑

k=1

−b(ik)
u(ik)

+τ(iℓ′)−1 for all n ∈ {1, . . . ,h}. (4.1)

Let n ∈ {1, . . . ,h} and (1, . . . ,n)⊆ (1, . . . ,h) is a tuple which contains the first n sinks regarding
the path length. Furthermore, let (i1, . . . , iℓ) ⊆ (i1, . . . , ih) be the smallest tuple that contains
every element in the tuple (1, . . . ,n) (such that (1, . . . ,n) ⊆ (i1, . . . , iℓ)).

Small Claim: It holds that τ(n) ≤ τ(iℓ).

Suppose that τ(n) > τ(iℓ). Then, iℓ < (1, . . . ,n) is not an element in the tuple and thus
the tuple (i1, . . . , iℓ−1) is a smaller tuple which also satisfies that (1, . . . ,n) ⊆ (i1, . . . , iℓ−1).
Hence, we have a contradiction and the small claim holds.
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Now we can show that the time horizon of the flow represented by (1, . . . ,h) is indeed the
smallest.

• Suppose that ℓ < ℓ′. Then, we derive that

n∑
k=1

−b(k)
u(k)

+τ(n)−1 ≤
ℓ∑

k=1

−b(ik)
u(ik)

+τ(n)−1

≤

ℓ∑
k=1

−b(ik)
u(ik)

+τ(iℓ)−1

≤

ℓ′∑
k=1

−b(ik)
u(ik)

+τ(i′ℓ)−1 = T (i1, . . . , ih).

The first inequality holds since (1, . . . ,n) is contained in (i1, . . . , iℓ) and the fraction is
non-negative, the second inequality follows via the small claim, and the third inequal-
ity is valid since ℓ′ maximizes the term.

• Suppose that ℓ = ℓ′ or ℓ > ℓ′. Then, the proof is analogous to the previous one.

We obtain that the statement in Equation (4.1) is valid for any n ∈ {1, . . . ,h} and hence
T (1, . . . ,h) ≤ T (i1, . . . , ih). Thus, the algorithm computes a flow following the requirements
which has minimal time horizon. □

If we loosen the requirements and specify that we may fulfill the demand of more than
one sink per subflow, we can enhance the previous algorithm. Again, we start by filling
the sink with the longest path. But now, we additionally send as much flow as possible to
the other sinks with long paths. Then, we update the balance function for those sinks and
restart by filling the sink with the second longest path (if the balances were not updated to
0). Additionally, we send as much flow as possible to other sinks and resume analogously.
Figure 4.4 depicts the solution of this algorithm for the network in Figure 4.1.

The formalization of the enhanced algorithm can be found in Listing 4.2. It uses residual
networks for uniform flows.

Definition 4.3 (Residual Network for Uniform Flows). Let f be a uniform flow on a net-
work (G,u, τ). Then, there exists a static flow x that the flow f is associated to (see Defini-
tion 2.18). The residual network (G,u, τ) f is the residual network (G,u)x of the static flow x
together with the transit times τ.

We show that the algorithm computes a solution of the Quickest Transshipment on Trees
Problem.

Lemma 4.4. The algorithm in Listing 4.1 yields a feasible k-uniform flow with k ≤ h, which
fulfills the demand given via the balances b.

Proof. The computed flow consists of k ≤ h distinct uniform subflows, where each is con-
structed in one iteration of the outer For loop. Let us consider one such iteration.
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Figure 4.4: Another feasible solution for the Quickest Transshipment Problem given in Fig-
ure 4.1. It has a smaller time horizon than the solution given in Figure 4.3 and
is a solution of the algorithm in Listing 4.2.

For i ∈ {1, . . . ,h} with b(ti) , 0, the algorithm constructs a feasible uniform flow fi which
fulfills the demand of sink ti. This flow is iteratively merged with uniform flows with cor-
responding time horizons on the (also updated) residual network. This results in a feasible
uniform flow, since all flows are uniform, have the same time horizon, and satisfy the ca-
pacity constraints (see Definition 2.20).

The combination of the distinct uniform flows yields a feasible k-uniform flow f and hence
the solution of the algorithm is feasible. Since there are exactly h iterations of the outer For
look, there are at most h possible subflows of f , therefore k ≤ h.

Suppose that there are ℓ subflows f1, . . . , fℓ that fill sink ti. Since the demand b(ti) is updated
at each step, the subflows send exactly the original amount b(ti) of flow to sink ti. □

We prove that any solution of the enhanced algorithm is indeed a better solution than the
corresponding solution of the simple algorithm.

Lemma 4.5. For a given network (G,u, τ) and a balance function b, the algorithm in List-
ing 4.2 yields a solution with time horizon smaller or equal to the solution of the algorithm
in Listing 4.1.

Proof. The proof of Lemma 4.2 states that the algorithm in Listing 4.1 computes a solution
with time horizon

T4.1(1, . . . ,h) = max
ℓ∈{1,...,h}

{ ℓ∑
k=1

−b(k)
u(k)

+τ(ℓ)−1
}

if the sinks are ordered in descending order regarding their path length.
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Listing 4.2: Enhanced Algorithm
1 Input: Tree network (G,u, τ) and balance function b
2 Output: k-uniform flow f with k ≤ h
3

4 Calculate path length τ(pi) with pi = (s, . . . , ti) for all i ∈ {1, . . . ,h}
5 Sort sinks such that τ(p1) ≥ τ(p2) ≥ . . . ≥ τ(ph)
6

7 Initiate f as empty flow
8

9 For i := 1 to h do:
10 If b(ti) = 0 then:
11 Set Ti := 0
12 Else:
13 Construct uniform flow fi
14 which completely fulfills demand of sink ti
15 with minimal time horizon Ti

16 Create residual network (G,u, τ) fi
17 Set b(ti) := 0
18

19 For j := i+1 to h do:
20 If b(t j) , 0 and p j = (s, . . . , t j) exists in (G,u, τ) fi then:

21 Construct uniform flow f j
i

22 which fulfills as much demand of sink t j as possible
23 but less or equal than b(t j) (otherwise continue with j+1)
24 in the time horizon Ti

25 Merge fi := fi+ f j
i

26 Update residual network (G,u, τ) fi
27 Update b(t j)
28

29 Update f by combining f and fi
30

31 Return f
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The solution of the algorithm in Listing 4.2 has time horizon

T4.2(1, . . . ,h) := max
ℓ∈{1,...,h}

{ ℓ∑
k=1

Tk +τ(ℓ)−1
}
,

since the time is determined by the construction of the uniform subflows in the outer For
loop (see lines 11 and 15).

Throughout the execution of the algorithm, the balances may get updated. We denote the
updated balances as b′(tk) and know that 0 ≥ b′(tk) ≥ b(tk). Hence, −b′(tk) ≤ −b(tk) and Tk

is either 0 (line 11) or T = −b′(k)
u(k) ≤

−b(k)
u(k) . Therefore, we derive that

T4.2(1, . . . ,h) ≤ T4.1(1, . . . ,h)

and the updated algorithm computes a better (or equally good) solution. □

Figure 4.5 contains an example that shows that the enhanced algorithm does not compute
an optimal solution for the problem given in Definition 4.1. But the algorithm helps us to
obtain an upper bound for the Quickest Transshipment Problem on Trees. The correlating
lower bound is easy to compute.

Lemma 4.6. For a tree network (G,u, τ) and a balance function b, an upper bound for the
Quickest Transshipment Problem on Trees is given by

T4.1(1, . . . ,h) := max
ℓ∈{1,...,h}

{ ℓ∑
k=1

−b(k)
u(k)

+τ(ℓ)−1
}
. (4.2)

A lower bound is

Tlower(1, . . . ,h) := max
ℓ∈{1,...,h}

{
−b(ℓ)
u(ℓ)

+τ(ℓ)−1
}
. (4.3)

Proof. The term in Equation (4.2) is a valid upper bound, since the algorithm in Listing 4.1
computes a solution with such a time horizon.

Suppose that ℓ ∈ {1, . . . ,h} is a sink in the network. If we consider the network reduced to
the source, the sink ℓ, and the path in between, then the optimal solution for the Quickest
Transshipment Problem on Trees has time horizon −b(ℓ)

u(ℓ) + τ(ℓ)− 1. Solving the Quickest
Transshipment Problem on the original network, needs at least as much time since the net-
work is a tree and does not include any shortcuts. Hence, the term in Equation (4.3) is a
lower bound. □
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Figure 4.5: A tree network (G,u, τ) where the labels represent (u, τ) with a balance function
b. The flow with the longer time horizon is computed by the enhanced algorithm
in Listing 4.2 and is not an optimal solution (compare with the quicker flow
below).
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4.2 Almost-binary Trees

In this section, we analyze tree networks and consider equivalence relations on those net-
works. This allows us to consider only tree networks with a special structure in subsequent
sections.

For that purpose, we define several operations which transform a tree network into an equiv-
alent network. Those operations either delete nodes or add auxiliary nodes. Using those
operations, we prove that we can transform every tree network into an equivalent network
where the underlying graph is a binary tree. At the end of this section, we define almost-
binary trees that will be used in the next section.

For the sake of completeness, we consider networks with cost functions. If there does not
exist a cost function, the costs can simply be ignored throughout this section.

Given two networks and one flow on each network, we call those flows equivalent if the
conditions given in Definition 4.7 hold. The equivalence of flows will help us to define the
equivalence of tree networks.

Definition 4.7. Let f be a flow on (G,u, τ,c), f ′ a flow on (G′,u′, τ′,c′) and both networks
are tree networks. The two flows f and f ′ are equivalent, denoted by f ≡ f ′, if

• the number of sinks in both networks is equal and we can pair each sink in one network
with a sink in the other one, and

• for each sink at each point in time the same number of units arrives with the same
aggregated costs.

The aggregated costs are the costs of the path from the source to the sink.

Equivalent flows satisfy the same balance function (maybe with adapted sinks), have the
same costs, and have the same overall time horizon. Additionally, the sum of the transit
times for all units is also the same. Now, two networks are equivalent if for each flow on
one network there exists an equivalent flow on the other network.

Definition 4.8. Two tree networks (G,u, τ,c), (G′,u′, τ′,c′) are equivalent,

(G,u, τ,c) ≡ (G′,u′, τ′,c′),

if for each flow f on the network (G,u, τ,c) there exists an equivalent flow f ′ on the other
network (G′,u′, τ′,c′) and vice versa.

We define several operations that transform a tree network into an equivalent tree network.
The first operation allows us to merge a node with its child node if there exists exactly one
child. Otherwise, the tree network remains unchanged. The operation takes the network
and a particular node in the network as arguments. Compare the definition with Figure 4.6
which depicts how the network is changed.

Definition 4.9 (Merge Nodes). Let (G,u, τ,c) be a tree network and v ∈G a node. Then, we
define an operation ρ1((G,u, τ,c),v) in the following way:
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Figure 4.6: Transformation via the operation ρ1, which merges a node v with its single child
and updates the capacities, transit times, and costs on the arcs.

• If v is a leaf or has at least two children or is the root, then it maps to the network
(G,u, τ,c).

• Otherwise, it maps to the network (G′,u′, τ′,c′) which resembles the network (G,u, τ,c)
except that the node v and the arcs (r,v) and (v,v0) are deleted (where r ∈ V is the par-
ent of v and v0 is the child of v) and an arc (r,v0) is added with

u(r,v0) :=min{u(r,v),u(v,v0)}, τ(r,v0) := τ(r,v)+τ(v,v0),

and c(r,v0) := c(r,v)+ c(v,v0).

We show that the previously defined operation transforms a network into an equivalent net-
work.

Lemma 4.10. For a tree network (G,u, τ,c) and any node v ∈G, the network ρ1((G,u, τ,c),v)
is equivalent to the network (G,u, τ,c).

Proof. If v is a leaf or has more than one child or is the root, then the two networks are equal
and hence also equivalent. We assume that this is not the case.

This operation does not change the number of leaves (or sinks) in the network since v has a
child node. Hence, we can associate each leaf with the same leaf in the transformed network.
We show that the networks (G,u, τ,c) and (G′,u′, τ′,c′) := ρ1((G,u, τ,c),v) are equivalent by
showing that a flow f on (G,u, τ,c) has an equivalent flow f ′ on (G′,u′, τ′,c′) and vice versa.

Otherwise, we suppose that f is a flow on the tree network (G,u, τ,c). Then, we create a flow
f ′ on the network (G′,u′, τ′,c′) which differs from f only on the arcs between r, v, and v0,
where r ∈G is the parent and v0 ∈G the child of v. Each flow is sent along arc (r,v0) instead
of along the path (r,v,v0). This yields a feasible flow since the capacity of the updated arc
(r,v0) is sufficient. Furthermore, the flow f ′ is equivalent, since the transit time and costs of
the updated arc are equal to the transit time and costs of the original path.

For any flow f ′ on the network (G′,u′, τ′,c′), there also exists an equivalent flow f on
(G,u, τ,c) which can be constructed and proven in a similar way. □

The second operation adds two auxiliary nodes if a node has more than two children. The

43



v

. . .v1 vn

(u1, τ1,c1)

(un, τn,cn)

v

v0 v1

. . . . . .v1 vx vx+1 vn

(u1+...+ux,
0, 0)

(ux+1+ . . .+un,0,0)

(u1, τ1,c1)

(ux, τx,cx)
(ux+1,
τx+1,cx+1)

(un, τn,cn)

ρ2
==⇒

Figure 4.7: Transformation via the operation ρ2, which reorganizes the n > 2 children of a
node v via two auxiliary nodes. The operation ensures that the node v has at
most two children and adapts the capacities, transit times, and costs. If the node
v has at most two children, then the operation does not alter the network.

two auxiliary nodes become the new children of the node and the original children become
children of the auxiliary nodes. This increases the height of the subtree and ensures that
the particular node has at most two children. Compare the definition with Figure 4.7 which
depicts the transformation of a node with more than two children.

Definition 4.11 (Split Children). Let (G,u, τ,c) be a tree network and v ∈G a node. Then,
we define an operation ρ2((G,u, τ,c),v) which maps to the network (G,u, τ,c) if v has at most
two children, otherwise it maps to a network (G′,u′, τ′,c′) which resembles (G,u, τ,c) except
that

• two new auxiliary nodes v0,v1 are added, and

• two new arcs (v,v0), (v,v1) are added with

u(v,v0) :=
x∑

i=1

u(v,vi), u(v,v1) :=
n∑

i=x+1

u(v,vi),

τ(v,v0) := 0, τ(v,v1) := 0, and c(v,v0) := 0, c(v,v1) := 0,

where x := ⌈n2⌉ and n is the number of children of v.

• For each original child vi of v the arc (v,vi) is replaced by the arc (v0,vi) (if i ≤ x) or
(v1,vi) (if i > x) with the same capacity, transit time, and costs.

Let us take a look at how the operations ρ1 and ρ2 alter the capacities of the arcs. The first
operation sets the capacity to the minimum of both involved original capacities. This is
crucial since otherwise, the transformed network might allow more units to flow over an arc
than in the original network.

The split operation ρ2 restricts the capacity of the arcs (v,v0), (v,v1) by the sum of the arcs
to the children of the auxiliary nodes. However, the capacity could have been an arbitrary
larger value, since the flow in the transformed network is already restricted by the arcs from
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the auxiliary nodes to their children. For the computation of algorithms on a tree network,
it is generally useful to choose values as small as possible, hence we choose the smallest
possible capacity such that the network is equivalent to the original network.

Now, we prove that the second operation also preserves the equivalence of tree networks.

Lemma 4.12. For a tree network (G,u, τ,c) and any node v ∈G, the network ρ2((G,u, τ,c),v)
is equivalent to the network (G,u, τ,c).

Proof. Again, this operation does not change the number of leaves (or sinks) in the network.
Hence, we can associate each leaf with the same leaf in the transformed network.

Again, we can show the equivalence of the networks by constructing equivalent flows for
both directions. The proof is similar to the proof of Lemma 4.10. □

We can use the previously defined operations to transform any tree network into an equiva-
lent tree network where the underlying graph is a binary tree. A tree is binary if each node
has at most two children and it is complete binary if all nodes except the leaves have exactly
two children. We will need complete binary trees in Corollary 4.14 and later.

Theorem 4.13. Given a tree network (G,u, τ,c), we can construct another tree network
(G′,u′, τ′,c′), where G′ is a binary tree, by a series of operations ρ1, ρ2.

To prove this theorem, we introduce the recursive algorithm Transformation given in List-
ing 4.3. For any network (G,u, τ,c) and any node v ∈ G, the execution of the algorithm
Transformation((G,u, τ,c),v) transforms the subgraph belonging to v into a binary tree.
Therefore, it analyzes whether the node v has one child, two children or more children.
If it has one child and is not the root of the tree G, then the node gets merged with its child.
If it has two children, then the algorithm is executed recursively on the children. If it has
more than two children, then it creates auxiliary nodes such that v now has two children.
Then it executes the algorithm recursively on the newly added auxiliary nodes.

The algorithm uses only the operations ρ1 and ρ2. The subsequent proof shows that the
resulting network is indeed a binary tree network.

Listing 4.3: Transformation into Binary Tree Network
1 Input: Tree network (G,u, τ,c), node v ∈G
2 Output: An equivalent tree network (G′,u′, τ′,c′),
3 where the subtree belonging to v is a binary tree
4

5 If v has exactly one child v1 and is not the root:
6 Update (G,u, τ,c) := ρ1((G,u, τ,c),v)
7 Set (G,u, τ,c) := Transformation((G,u, τ,c),v1)
8 Else if v has two children v1, v2:
9 Set (G,u, τ,c) := Transformation((G,u, τ,c),v1)

10 Set (G,u, τ,c) := Transformation((G,u, τ,c),v2)
11 Else if v has n children:
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12 Update (G,u, τ,c) := ρ2((G,u, τ,c),v)
13 Let v1,v2 be the new children
14 Set (G,u, τ,c) := Transformation((G,u, τ,c),v1)
15 Set (G,u, τ,c) := Transformation((G,u, τ,c),v2)
16

17 Return (G,u, τ,c)

Proof of Theorem 4.13. Let (G,u, τ,c) be a tree network and v ∈G a node. We show that the
execution of the algorithm in Listing 4.3 on (G,u, τ,c) and v computes an equivalent network
where the subgraph belonging to v is a binary tree via structural induction:

Base Case: Suppose that v is a leaf, then the algorithm returns the network (G,u, τ,c) and
the subgraph belonging to v is already a binary tree.

Induction Hypothesis: We assume that the statement is true for all tree networks (G,u, τ,c)
and all nodes v ∈ G such that the subtree belonging to v has at most n nodes, where
n ∈ N0 is arbitrary but fixed.

Inductive Step: Suppose that v is a node such that all the subgraphs belonging to the children
of v have at most n nodes. Then, there are three cases:

• If v is not the root and has exactly one child v1, then the operation ρ1 deletes v
and replaces it with v1. Furthermore, the reductive execution of the algorithm
on the updated network (G,u, τ,c) and the node v1 ensures that the subgraph
belonging to v1 is binary due to the induction hypothesis.

• If v has two children v1,v2, then the execution of the algorithm on both nodes
yields binary subgraphs (again due to the induction hypothesis) and the resulting
subgraph belonging to v is binary.

• If v has more children v1, . . . ,vn, then the operation ρ2 adds two new auxiliary
nodes which become the only children of v. Since the algorithm is executed on
both nodes, the belonging subgraphs are binary trees (again due to the induction
hypothesis) and hence also the subgraph belonging to v.

Hence, the assumption holds. □

From the previous proof, we can derive that the structure of the transformed network is a
special binary tree.

Corollary 4.14. Given a tree network (G,u, τ,c) with root r ∈G, the execution of the algo-
rithm in Listing 4.3 on (G,u, τ,c) and r yields a network (G′,u′, τ′,c′), where

• the graph G′ is a binary tree, and

• if r ∈ G′ is the root, then for each child v of r the subgraph which belongs to v is a
complete binary tree.

Proof. It follows from Theorem 4.13 that the resulting network is a binary tree network.
Furthermore, we can see in the proof that the subgraphs of the children of the root are
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complete binary since every node which is not the root and has exactly one child is merged
with this child. Hence, every node in the graph which is neither the root nor a leaf has
exactly two children. □

Since the operations ρ1,ρ2 preserve the equivalence of networks, the concatenation of the
operations also preserves the equivalence. The next corollary follows directly.

Corollary 4.15. For every tree network, there exists an equivalent tree network, where the
underlying graph is a binary tree.

Proof. This follows directly from Theorem 4.13 since the equivalence of the networks is
preserved under the operations ρ1 and ρ2 (see Lemma 4.10 and 4.12). □

For tree networks with bounded maximal degree of the nodes, the runtime of the algorithm
is polynomial in the size of the network.

Corollary 4.16. Let (G,u, τ,c) be a tree network, where the tree G has degree k ∈ N0 and
|G| = n. Then, an equivalent binary tree network can be computed in O(n · k) steps.

Proof. We obtain such an equivalent binary tree network by executing the algorithm in
Listing 4.3 on the tree network (G,u, τ,c). If k is the maximal degree of any node in the tree
G, then there are at most n · k recursive calls of the algorithm, where the factor k is caused
by the split operation ρ2. □

We define another operation on tree networks, which ensures that a particular node is either
a leaf or has exactly one child. Therefore, it might add an auxiliary node which increases
the height of the subtree. Compare the definition with Figure 4.8 which depicts the trans-
formation if the node has at least two children.

Definition 4.17 (Single Child). Let (G,u, τ,c) be a tree network and v ∈G a node. Then, we
define an operation ρ3((G,u, τ,c),v) which maps to the network (G,u, τ,c) if v has at most
one child, otherwise it maps to a network (G′,u′, τ′,c′) which resembles (G,u, τ,c) except
that

• an auxiliary node v0 and an arc (v,v0) are added with

u(v,v0) :=
n∑

i=1

u(v,vi), τ(v,v0) := 0, and c(v,v0) := 0,

where v1, . . . ,vn are the original children of v.

• The arcs (v,vi) are replaced by the arcs (v0,vi) with the same capacity, transit time,
and costs.

As with operation ρ2, the capacity of the newly created arc (v,v0) may also be larger than
the sum of the capacities of the arcs (v,vi), i ∈ {1, . . . ,n}. A network with a larger capacity
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Figure 4.8: Transformation via the operation ρ3, which creates an auxiliary node if the node
v has at least two children. The original children become the children of the
auxiliary node.

on the arc (v,v0) would also be equivalent to the original network, but computations on the
network might be slower due to the usage of larger numbers (see Figure 4.9 for an example).

Lemma 4.18. For a tree network (G,u, τ,c) and any node v ∈G, the network ρ3((G,u, τ,c),v)
is equivalent to the network (G,u, τ,c).

Proof. Again, the number of leaves (or sinks) is not changed by this operation. Furthermore,
we can show the equivalence of the networks by constructing equivalent flows for both
directions. □

We define another type of trees that resemble binary trees except that the root has at most
one child. For our problem, this is the simplest type of trees and will be used in the next
section. We call those trees almost-binary trees and Figure 4.9 contains an example of an
almost-binary tree network.

Definition 4.19 (Almost-binary Tree). An almost-binary tree is a tree G which satisfies that

• the root node r ∈G has at most one child v ∈G, and

• the subtree belonging to the node v is a complete binary tree (if v exists).

Theorem 4.20. For each tree network (G,u, τ,c), there exists an equivalent tree network
where the underlying graph is an almost-binary tree.

Proof. Corollary 4.14 shows that there exists a binary tree network (G0,u0, τ0,c0) which is
equivalent to (G,u, τ,c). It also states that for each child v of the root r ∈ G0, the subgraph
belonging to v is a complete binary tree.

If r has no or exactly one child, then the network is already almost-binary. Otherwise, r
has two children and the tree G0 is complete binary. Then, the result of the operation ρ3 on
(G0,u0, τ0,c0) and r yields a network

(G1,u1, τ1,c1) := ρ3((G0,u0, τ0,c0),r) ≡ (G0,u0, τ0,c0) ≡ (G,u, τ,c),
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Figure 4.9: All depicted trees lie in one equivalence class. The top left tree is non-binary
and can be transformed into the top right tree which is binary. This tree can be
transformed into the middle right tree which is complete binary. There exists a
transformation into the middle left tree which is an almost-binary tree.
The operation ρ3 chooses the smallest possible capacity, but any larger capacity
would also yield an equivalent tree (e.g. the tree at the bottom).
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Figure 4.11: An almost-binary tree and the optimal 1-uniform flow.

where the root r ∈G1 has exactly one child and the subtree of the child is a complete binary
tree. Hence, the statement is correct. □

We have shown that for each tree network (G,u, τ,c), there exist equivalent tree networks
(G0,u0, τ0,c0) and (G1,u1, τ1,c1) such that the tree G0 is a binary tree and the tree G1 is an
almost-binary tree.

The equivalence of tree networks (see Definition 4.8) partitions the set of all tree networks
into equivalence classes. In one equivalence class, there exists for each flow on each network
in the class an equivalent flow in every other network in the same class. Any problem
that we considered in Chapter 3 has the same optimal value for every network in the same
equivalence class. If we know the transformation of any network into an equivalent network
with a special form (e.g. almost-binary), we can reduce the problem and solve it only for
those special graphs.

In the next section, we do exactly this and consider only almost-binary graphs.

4.3 Optimal Solutions for Small Trees

In this section, we analyze the problem stated in Definition 4.1 on almost-binary tree net-
works. We start by calculating the optimal solutions on small almost-binary trees and ob-
serve whether the findings can be transferred efficiently onto larger trees.

Single Sink We consider almost-binary tree networks with one leaf (thus one sink). Then,
the tree consists of exactly two nodes with one arc in between (see Figure 4.10).

For any balance function, we can compute the shortest time horizon and the corresponding
flow easily. We calculate the number of iterations and add the length of the path from
the source to the sink minus one (since we started the first iteration at point in time zero).
Figure 4.11 contains an example.
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Figure 4.12: The unambiguous structure of an almost-binary tree (G,u, τ,c) with two sinks
and a balance function b.

Lemma 4.21. Let (G,u, τ,c) be an almost-binary tree network with one leaf and a balance
function b and variables as implicitly defined in Figure 4.10. Then, the minimal time horizon
for a 1-uniform flow satisfying b is

T :=
⌈
b
u

⌉
+τ−1.

Proof. The optimal uniform flow which satisfies the balances sends as much flow as possible
at each point in time, hence u units. The rest of the formula follows directly. □

We have shown that an optimal solution for an almost-binary tree with one sink can be
calculated by a very simple formula. Let us consider trees with two sinks now.

Two Sinks We continue with almost-binary tree networks with two leaves. From the
definition of almost-binary trees, we can derive that the tree has exactly four nodes and the
form depicted in Figure 4.12.

Now, we consider the problem of finding a 1- or 2-uniform flow with minimal time horizon
which satisfies the balances. There are three different types of feasible solutions for almost-
binary trees with two sinks:

• A 2-uniform flow that fills one sink first and the other sink afterward. Figure 4.13
contains an example.

• A 2-uniform flow whose first subflow completely fills one sink and partly fills the
other sink. The second subflow fills the remainder of the other sink. If there is no
remainder, then the flow is a 1-uniform flow, see Figure 4.14 for an example.

• A 2-uniform flow that fills both sinks in both subflows but with different rates, see
Figure 4.15.

For each type of solution, we give a function that calculates the time horizon in the special
case.

We can directly calculate the optimal solution of the first type (that fills the sinks one after
another). It needs to fill the sink with the longer path first since this reduces the time at the
end where no new flow is sent but flow inside the network has not arrived yet. The following
function calculates its time horizon.
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Figure 4.13: A network and the optimal solution on this network. It fills one sink after
another and starts with the sink with the longer path. If the subflows were
switched, the time horizon would be longer.

Remark 4.22 (First Type). For the network in Figure 4.12, we define u1 :=min{u,u1}, u2 :=
min{u,u2}, τττ1 := τ+ τ1, and τττ2 := τ+ τ2. Then, f (u1, τττ1,b1,u2, τττ2,b2) calculates the time
horizon of the optimal solution of the first type as

f : N6
0→ N0, (u1, τττ1,b1,u2, τττ2,b2) 7→


⌈

b1
u1

⌉
+

⌈
b2
u2

⌉
+max

{
τττ2, τττ1−

⌈
b2
u2

⌉}
−1, τττ1 ≥ τττ2,

f (u2, τττ2,b2,u1, τττ1,b1), otherwise.

For the example in Figure 4.13, this yields u1 := 2, u2 := 2, τττ1 := 5, and τττ2 := 3 and the time
horizon is f (u1, τττ1,b1,u2, τττ2,b2) =

⌈
8
2

⌉
+

⌈
6
2

⌉
+3−1 = 9.

For the second type of solutions (which completely fill one sink and partly fill the other sink,
first), we can compute the time horizon of a solution if two flow rates x1, x2 ∈ N0 are given.
Afterward, the optimal solution of the second type with the given flow rates, fills both sinks
via the flow rates until one sink is satisfied. Then, it fills the other sink as fast as possible.
The time horizon is always smaller if the subflow filling both sinks comes first, since then
the time after the iterations is minimized.

Remark 4.23 (Second Type). For the network in Figure 4.12, we define u1 := min{u,u1},
u2 :=min{u,u2}, τττ1 := τ+τ1, and τττ2 := τ+τ2. Then, g(u1, τττ1,b1,u2, τττ2,b2, x1, x2) calculates
the time horizon for a solution of the second type which fills sink t1 at rate 1 ≤ x1 ≤ u1 and
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Figure 4.14: A network and the optimal solution on this network. The first subflow com-
pletely fills the sink t1 and partly fills the sink t2. The second subflow fills the
remainder of sink t2.

sink t2 at rate 1 ≤ x2 ≤ u2:

g : N8
0→ N0,

(u1, τττ1,b1,u2, τττ2,b2, x1, x2) 7→

d+
⌈

b2−d·x2
u2

⌉
+max

{
τττ2, τττ1−

⌈
b2−d·x2

u2

⌉}
−1, d :=

⌈
b1
x1

⌉
≤

⌈
b2
x2

⌉
,

g(u2, τττ2,b2,u1, τττ1,b1, x2, x1), otherwise.

For the example in Figure 4.14, this yields u1 := 2, u2 := 2, τττ1 := 6, and τττ2 := 3. For x1 := 2,
x2 := 1, the time horizon is g(u1, τττ1,b1,u2, τττ2,b2, x1, x2) = 4+

⌈
6−4·1

2

⌉
+5−1 = 9.

For the third type of solutions (where both subflows fill both sinks at different rates), we can
compute the time horizon of a solution if four flow rates x1, x2,y1,y2 ∈ N0 and a number of
iterations d ∈ N0 for the first subflow is given. Then, the first subflow fills sink t1 at rate x1
and sink t2 at rate x2 d times. The second subflow fills both sinks with the rates y1 and y2
until the balances are satisfied.

Not all combinations of rates x1, x2,y1,y2 ∈ N0 and iterations d ∈ N0 are feasible, hence the
following function is only defined if the rates and iterations allow a feasible 2-uniform flow.

Remark 4.24 (Third Type). For the network in Figure 4.12, we define u1 := min{u,u1},
u2 := min{u,u2}, τττ1 := τ+ τ1, and τττ2 := τ+ τ2. Furthermore, we have 1 ≤ x1,y1 ≤ u1, 1 ≤
x2,y2 ≤ u2, and d ∈ N. Then, h(τττ1,b1, τττ2,b2, x1, x2,y1,y2,d) calculates the time horizon for
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Figure 4.15: A network and the optimal solution on this network. The first subflow fills t1
five times with rate 2 and t2 with rate 1. The second subflow fills t1 with rate 1
and t2 with rate 2.

a solution of the third type (if the rates and number of iterations is feasible) as

h :
{

(τττ1,b1, τττ2,b2, x1, x2,y1,y2,d) ∈ N0

∣∣∣∣∣ 0 < e :=
⌈
b1−d · x1

y1

⌉
=

⌈
b2−d · x2

y2

⌉}
→ N0,

(τττ1,b1, τττ2,b2, x1, x2,y1,y2,d) 7→ d+ e+max{τττ1, τττ2}−1.

For the example in Figure 4.15, this yields u1 := 2, u2 := 2, τττ1 := 4, and τττ2 := 4. For x1 := 2,
x2 := 1, y1 := 1, y2 := 2, and d := 5, the time horizon is h(τττ1,b1, τττ2,b2, x1, x2,y1,y2,d) =
5+

⌈
13−5·2

1

⌉
+4−1 = 11.

Lemma 4.25. Let (G,u, τ,c) be an almost-binary tree network with two leaves and a balance
function b and variables as implicitly defined in Figure 4.12. We define u1 := min{u,u1},
u2 := min{u,u2}, τττ1 := τ+ τ1, and τττ2 := τ+ τ2. Then, the quickest 1- or 2-uniform flow has
time horizon

T :=min
(
{ f (u1, τττ1,b1,u2, τττ2,b2) }
∪ { g(u1, τττ1,b1,u2, τττ2,b2, x1, x2) | 1 ≤ x1 ≤ u1, 1 ≤ x2 ≤ u2, x1+ x2 ≤ u }
∪ { h(τττ1,b1, τττ2,b2, x1, x2,y1,y2,d) |

1 ≤ x1 ≤ u1, 1 ≤ y1 ≤ u1, 1 ≤ x2 ≤ u2,

1 ≤ y2 ≤ u2, x1+ x2 ≤ u, y1+ y2 ≤ u,

d <min
{⌈

b1
x1

⌉
,
⌈

b2
x2

⌉}
,
⌈

b1−d·x1
y1

⌉
=

⌈
b2−d·x2

y2

⌉
}
)
.

Proof. First, we show that the arguments for the function h are always feasible. Since
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d < min
{⌈

b1
x1

⌉
,
⌈

b2
x2

⌉}
, it holds that d · x1 < b1 and d · x2 < b2, hence

⌈
b1−d·x1

y1

⌉
,
⌈

b2−d·x2
y2

⌉
> 0.

Furthermore, we enforce the equality
⌈

b1−d·x1
y1

⌉
=

⌈
b2−d·x2

y2

⌉
, hence the combination is feasible

and the function h calculates a time horizon.

Now, we show that the time horizon of the optimal solution of the observed problem is
indeed T . It is obvious that every solution of the problem consists either of one subflow
that fills both sinks (which is represented by g), two subflows that fill both sinks separately
(which is represented by f ), two subflows where one subflow fills both sinks and the other
subflow fills only one sink (which is also represented by g), or two subflows which both fill
both sinks (which is represented by h). For each possible solution, either the solution itself
on an even quicker solution is calculated by the defined functions. Hence, the optimal time
horizon is T . □

We show that if the minimal capacities u1,u2 on the paths to the sinks t1, t2 are divisors of
the demand b1,b2, then the optimal solution has either the first or the second type.

Lemma 4.26. Let (G,u, τ,c) be an almost-binary tree network with two leaves and a balance
function b and variables as implicitly defined in Figure 4.12. We define u1 := min{u,u1},
u2 :=min{u,u2}, τττ1 := τ+τ1, and τττ2 := τ+τ2. If

u1 | b1 and u2 | b2,

then the minimal time horizon for a 1- or 2-uniform flow satisfying b is

T :=min
(
{ f (u1, τττ1,b1,u2, τττ2,b2) }
∪ { g(u1, τττ1,b1,u2, τττ2,b2, x1, x2) | 1 ≤ x1 ≤ u1, 1 ≤ x2 ≤ u2, x1+ x2 ≤ u }

)
.

Proof. We show that for any solution of the third type, there exists a solution having the
first or second type with smaller or equal time horizon.

Suppose that τττ1 ≥ τττ2 and f is a flow of the third type.

• If u= u1, then we can construct a flow f ′ of the first type, which first fills the sink t1 as
fast as possible and then the sink t2 afterward. The capacity u is completely utilized
at every iteration of the first subflow. Furthermore, the transit time to t2 is smaller
than the time to t1, hence the flow is actually minimal and has smaller or equal time
horizon than f .

• If u , u1, but d · (u−u1) ≤ b2, where d :=
⌈

b1
u1

⌉
is the number of iterations to fill t1.

Then, we construct a flow f ′ of the second type, where the first subflow completely
fills t1 and the remaining capacity u−u1 is used to fill t2. The second subflow fills the
remainder of t2 as fast as possible. Again, this flow has minimal time horizon and is
at least as quick as f .

• If u , u1 and d · (u−u1) > b2. Then, it follows that
⌈

b2
min{u2,u−u1}

⌉
·u1 ≤ b1, hence we

can construct a flow f of the second type, where the first subflow completely fills
the sink t2 with capacity min{u2,u−u1} and partly fills the sink t1 with capacity u1.
Then, the second subflow fills the remainder of t1. This flow fills the sink t1 as fast as
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Figure 4.16: The unambiguous structure of an almost-binary tree (G,u, τ,c) with three sinks
and a balance function b.

possible and meanwhile also fills the sink t2. Hence, it is also minimal regarding its
time horizon and thus at least as quick as f .

The assumption follows. □

Arbitrary Almost-binary Networks For an almost-binary tree with three leaves, the
structure of the tree is still predefined (see Figure 4.16). If there are more than three leaves,
then there exist differently structured almost-binary trees with the same number of leaves.

For small almost-binary tree networks and corresponding balance functions, it is relatively
easy to calculate the minimal time horizon. But for larger tree networks, the calculation
becomes hard. It would be useful to calculate partial solutions for subtrees and compose
or extend them to solutions of the whole tree. Figure 4.17 contains an almost-binary tree
network, a solution for a subtree, and an extended solution. We see that it is possible to
calculate and then extend partial solutions in order to obtain a solution for the whole tree
network.

Unfortunately, we cannot guarantee that the extension of an optimal solution for a subtree
yields an optimal solution for the whole tree network. The flows in Figure 4.17 are an
example; the first flow is optimal for the subtree, but the second flow is not optimal for
the whole tree. Note that the extension is already the best possible extension. Figure 4.18
contains a non-optimal solution of the subtree and its extension to an optimal solution for
the whole tree network.

The previous example decreases the hope for an efficient polynomial algorithm that solves
the problem if we cannot restrict the set of relevant solutions of the subgraphs.

4.4 Linear Relaxation

In the following, we observe whether it is possible to solve the problem defined at the
beginning of this chapter via a linear program. More concretely, we give a integer linear
program for finding a 1-uniform flow and analyze its linear relaxation.
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Figure 4.17: A network and two flows on this network. The first flow considers only the
subgraph containing v1,v2, t1, t2, and the corresponding arcs and satisfies the
restricted balance function. It is an optimal flow for this reduced network. The
second flow extends the solution to a new solution for the whole network.
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Figure 4.18: Two flows on the network given in Figure 4.17. Again, the first flow considers
the reduced network and satisfies the restricted balance function. It is not an
optimal solution, but the second flow is an extension that is better than any
extension of the optimal flow in the previous figure.
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Again, pi = (s, . . . , ti), i ∈ {1, . . . ,h} is the path from the source to a sink.

The following linear program (IP) finds a 1-uniform flow with minimal time horizon for a
tree network (G,u, τ,c):

min d

s.t.
∑
i∈Ia

−bi ≤ d ·u(a), a ∈ A, Ia := {i ∈ {1, . . . ,h} | a ∈ pi},

d ∈ N0.

Here, d is the number of iterations (the number of times that flow is sent from the source).
For 1-uniform flows, minimizing the number of iterations leads to minimizing the total time
horizon, since the overhead is exactly maxi∈{1,...,h}{τ(pi)} and cannot be reduced. The total
time horizon is d+maxi∈{1,...,h}{τ(pi)}−1.

Let us consider the relaxation (LP) of the linear program (IP), where d ∈ R≥0. It is com-
putable in polynomial time, but cannot easily be transformed into an optimal integer so-
lution. In the rest of this section, we show how to transform the solution of the relaxed
problem into an integer flow of the following type.

Definition 4.27 (Load-Consistent k-Uniform Flow). A k-uniform flow f is load-consistent
if for all subflows f1, . . . , fk and the corresponding path decompositions yi : Pi → R≥0, i ∈
{1, . . . ,k}, it holds that

Pi ⊇ Pi+1 and yi(p) = yi+1(p) for all p ∈ Pi+1, i ∈ {1, . . . ,k−1}.

We call yi(p) for p ∈ Pi the load of the path (or the corresponding sink). A load-consistent
k-uniform flow is a special k-uniform flow where the load to each sink is consistent up to a
certain point in time after which it is zero (if the load is not a divisor of the demand, then the
very last iteration that sends flow to the sink may send less than the usual load). Figure 4.19
contains an example of a load-consistent flow.

We can transform a solution of the relaxed linear program (LP) into an optimal load-
consistent k-uniform flow with k ≤ h via the algorithm in Listing 4.4. The algorithm per-
forms the following steps:

• It calculates an optimal solution d′ ∈ R≥0 of the relaxed linear program (LP).

• For any i ∈ {1, . . . ,h}, if bi
d′ < 1, then we fix the load xi := 1 and recalculate d′ via (LP)

for all remaining sinks {1, . . . ,h′}.

• For all i ∈ {1, . . . ,h′}, set load xi :=
⌊

bi
d′
⌋

to the closest smaller integer. The resulting
flow is feasible, since the capacity constraints remain satisfied.

• The time horizon of the load-constraint k-uniform flow is induced by the sink ti with
maximal value bi

xi
+ τ(pi). The time horizon can be reduced if the load xi may be

increased. If possible, it updates the load, otherwise, the solution is optimal and the
algorithm breaks.
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Listing 4.4: Relaxed Solution Into Integer Uniform Flow
1 Input: Tree network (G,u, τ) and balance function b
2 Output: Optimal integer load-consistent k-uniform flow satisfying b,
3 if it exists (k ≤ h)
4

5 Calculate optimal solution d′ ∈ R≥0 of (LP)
6 For i in 1, . . . ,h do:
7 If −bi

d′ < 1: Fix xi := 1, update capacities u(a) := u(a)−1 ∀a ∈ pi and set bi := 0
8 Recalculate optimal solution d′ ∈ R≥0 of (LP) for remaining sinks t1, . . . , th′
9 If no solution exists:

10 Return // No optimal integer solution exists
11 Reset network
12

13 Set xi :=
⌊
−bi
d′

⌋
, i ∈ {1, . . . ,h′}

14 Sort all sinks such that −b1
x1
+τ(p1) ≥ −b2

x2
+τ(p2) ≥ . . . ≥ −bh

xh
+τ(ph)

15

16 For i in 1, . . . ,h:
17 If possible to augment load to ti:
18 Update xi := xi+1
19 Resort sinks i+1, . . . ,h

20 Else if exists t j, i < j, such that max
{
−bi
xi+1 +τ(pi),

−b j
x j−1 +τ(p j)

}
< −bi

xi
+τ(pi)

21 and updated flow feasible:
22 Update xi := xi+1, x j := x j−1
23 Resort sinks i+1, . . . ,h
24 Else:
25 Break, the solution is optimal
26

27 Return x1, . . . , xh

In the following, we prove a few properties.

We start by showing that the flow obtained by sending xi to sink ti until the demand is
satisfied results in a feasible load-consistent flow.

Lemma 4.28. The flow obtained after line 13 in Listing 4.4 is a feasible integer load-
consistent k-uniform flow with k ≤ h.

Proof. Obviously, the loads x1, . . . , xh and the number of iterations d are integer. We con-
sider the sinks t1, . . . , th′ that are not fixed to 1 in line 7.

The constraint
∑

i∈I −bi ≤ d′ ·u(a) in (LP) implies that
∑

i∈I

⌊
−bi
d′

⌋
≤

∑
i∈I
−bi
d′ ≤ u(a), hence the

flow is feasible.

Furthermore, the load to ti is consistent until the balances bi are satisfied. Furthermore, there
are at most h different points in time where the demand of a sink is finally satisfied, hence
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the flow is k-uniform with k at most h. □

We have shown that the first integer flow is feasible. Now, we prove that the updates also
yield feasible k-uniform flows.

Lemma 4.29. The flow obtained after lines 17-19 in Listing 4.4 is feasible.

Proof. It is possible to augment load xi to sink ti if, for all arcs a ∈ pi, the inequality
∑

j∈I x j ≤

u(a) is strict. Hence, the inequality xi + 1+
∑

i, j∈I x j ≤ u(a) is also valid and the resulting
flow is feasible. □

In line 21 of the algorithm, it already says that the flow may only be updated if the resulting
flow is feasible, meaning that the updated loads may not violate any capacity constraints.
We show that we only need to check a small set of sinks whether we can decrease their load
in order to increase the load to ti.

Lemma 4.30. Let a1, . . . ,ak ∈ pi be the arcs that restrict the load to ti. In lines 20-23, if
there exists such a sink t j, then the arcs also lie on the path to t j, hence a1, . . . ,ak ∈ p j.

Proof. The arcs a1, . . . ,am ∈ pi restrict the load to ti, hence
∑

i∈I xi = u(an) for 1 ≤ n ≤ m.

If t j is another sink with aℓ < p j for an ℓ ∈ {1, . . . ,m} then the updated flow is not feasible,
since

xi+1+
∑

i,k∈I

xi > u(aℓ).

Thus, we only need to consider sinks t j with a1, . . . ,am ∈ p j. □

The next lemma justifies why the algorithm does not have to consider any sink ti more than
once (through the for-loop).

Lemma 4.31. There exists a load-consistent k-uniform solution with minimal time horizon
such that for each sink ti, i ∈ {1, . . . ,h}, the load is at most xi =

⌊
−bi
d′

⌋
+1.

Initially, the load for each sink ti, i ∈ {1, . . . ,h}, is set to xi :=
⌊
−bi
d′

⌋
. For the sink with the

longest time horizon
⌈
−bi
xi

⌉
+τ(pi), the load may be increased once, but – following from this

lemma – we need not consider increasing the load again for this sink if we want to find an
optimal solution.

Proof. If xi =
⌊
−bi
d′

⌋
+ 1, then the time to fill only sink ti is smaller than d′ + τ(pi), hence

smaller than the time horizon of the optimal relaxed solution, which is a lower bound for
the total time horizon of the integer load-consistent solution.

Given a flow with xi >
⌊
−bi
d′

⌋
+ 1 for a sink ti, we can set xi :=

⌊
−bi
d′

⌋
+ 1 and obtain another

feasible flow with the same time horizon. Hence, the assumption is valid. □
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We show that the algorithm computes a solution with a minimal time horizon.

Theorem 4.32. The result of the algorithm in Listing 4.4 is an optimal integer load-consistent
k-uniform flow for k ≤ h.

Proof. It follows from Lemma 4.28, Lemma 4.29, and Lemma 4.30 that the resulting flow
is feasible and load-consistent k-uniform. We need to show that the time horizon is minimal.

The algorithm returns a solution if the flow cannot be updated by the two actions considered
in Lemma 4.29 (lines 17-19) and Lemma 4.30 (lines 20-23).

Suppose that the sinks t1, . . . , th are sorted such that

−b1

x1
+τ(p1) ≥

−b2

x2
+τ(p2) ≥ . . . ≥

−bh

xh
+τ(ph).

The time horizon of the flow is determined by −b1
x1
+τ(p1). Hence, the time horizon can only

be reduced if the number of iterations to fill sink t1 is reduced, respectively if the load x1 is
increased. There is no integer capacity on path p1 left, otherwise, the algorithm would not
have stopped. For the same reason, the load of no other sink t j may be decreased, without
increasing the total time horizon, in order to free capacity and increase the load x1.

Thus, the time horizon is minimal for all load-consistent k-uniform flows with k ≤ h. □

In the rest of this chapter, we look at an exemplary execution of the algorithm and analyze
its runtime.

Example 4.33. We apply the algorithm on the network in Figure 4.17.

• Calculate the optimal solution d′ ∈ R≥0 of (LP) as

d′ :=max
a∈A

{∑
i∈Ia −bi

u(a)

}
=max

{
8
2
,
10
2
,
18
3
,
10
2
,
28
4

}
=max {4,5,6,5,7} = 7.

• Set loads x1 :=
⌊
−b1
d′

⌋
=

⌊
8
7

⌋
= 1, x2 :=

⌊
−b2
d′

⌋
=

⌊
10
7

⌋
= 1, x3 :=

⌊
−b3
d′

⌋
=

⌊
10
7

⌋
= 1.

• Sort sinks −b3
x3
+τ(p3) = 10

1 +4 = 14 ≥ −b1
x1
+τ(p1) = 8

1 +5 = 13 ≥ −b2
x2
+τ(p2) = 10

1 +1 =
11.

• Analyze sink t3: There is free capacity on the path p3 to sink t3, hence augment load
to x3 := 2. Now, b3

x3
+τ(p3) = 10

2 +4 = 9.

• Analyze sink t1: There is no free capacity on the path p1.
The restricting arc is (s,v0) and we check sinks t2 and t3:

– It is max
{
−b1
x1+1 +τ(p1), −b3

x3+1 +τ(p3)
}
= 14 > 13, hence updating the loads x1, x3

does not reduce the time horizon.

– Since x2 = 1, we cannot reduce the load to sink t2 (the flow would not be feasible
anymore).

We cannot update the flow and the solution is an optimal load-consistent flow.
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Figure 4.19: The optimal load-consistent k-uniform flow (k ≤ 3) that satisfies the network in
Figure 4.17.

The solution of the algorithm is depicted in Figure 4.19. The optimal k-uniform flow has
smaller time horizon, but the obtained result is the load-consistent flow with minimal time
horizon.

Lastly, we show that the algorithm has polynomial runtime.

Corollary 4.34. An integer load-consistent k-uniform flow with minimal time horizon and
k ≤ h can be computed in polynomial time.

Proof. Finding a solution to the relaxed linear program (LP) has polynomial runtime [Sch98].
We may need to do this twice. The runtime of the for-loop in line 6 can be disregarded in
comparison to the second for-loop.

Lemma 4.31 shows that the for-loop in line 16 is correctly chosen. In each iteration of
the loop and in the worst case, we compare with all other sinks (even though this can be
greatly reduced, see Lemma 4.30) and check all arcs (while checking if the updated flow is
feasible). We re-sort the sinks in each iteration, which can also be done in polynomial time.

Hence, the overall time of the algorithm is polynomial. □
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5 Lexicographic Costs

In this chapter, we consider flows over time with different kinds of lexicographic cost func-
tions. In the first section, we prove an optimality criterion that was proposed in [Ham89] for
minimal static flows regarding a lexicographic cost function.

In the second section, we recapitulate the algorithm by L.R. Ford and D.R. Fulkerson for
computing maximal temporally repeated flows. Then, we update the algorithm such that
it computes maximal temporally repeated flows where the maximal costs over all points in
time are minimal. We show an example where such an optimized flow could be useful and
analyze whether we can calculate maximal temporally repeated flows with minimal total
costs in a similar way.

5.1 Optimality Criterion via Negative Cycles

In this section, we prove a theorem that was originally proposed – but not proven – by Horst
W. Hamacher in [Ham89]. It states the following:

Theorem 5.1. Let (G,u,c) be a network with a lexicographic cost function c and a balance
function b. A b-flow x is a lexicographic min cost flow if and only if there exists no x-
augmenting cycle with lexicographic negative costs.

This theorem resembles a theorem of M. Klein from 1967 (see [Kle67] and [BS67]), which
states that a static b-flow has minimal costs if and only if there exists no augmenting negative
cycle. Here, we examine the translation of this theorem to static networks with lexicographic
costs. Let us start by looking at the definitions of the terms lexicographic cost function,
lexicographic min cost flow, and lexicographic negative cycle.

A lexicographic cost function c : A→Nm
0 maps each arc to a tuple of costs. Hence, the costs

of a flow x are also given as a tuple. The residual graph is adapted analogously.

Definition 5.2 (Residual Lexicographic Costs). For a flow x over a network (G,u,c), the
residual network for a simple cost function c : A→N0 is defined in Definition 2.15. Given a
lexicographic cost function c : A→Nm

0 , we define the residual network (G,u,c)x analogously
and the residual cost function as

cx : Ax→ Z
m, a 7→

c(a), a ∈ A

−c(←−a ), a ∈
←−
A .
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In order to compare the costs, we need to define an ordering on the set of all costs.

Definition 5.3 (Lexicographic Ordering). For a set of tuples Zm, we specify ≺ as a lexico-
graphic ordering on the set with

(v1, . . . ,vm) ≺ (w1, . . . ,wm) iff (v1 < w1) or (v1 = w1 and (v2, . . . ,vm) < (w2, . . . ,wm))
for (v1, . . . ,vm), (w1, . . . ,wm) ∈ Zm.

For a restriction of Zm to the set Nm
0 , the lexicographic ordering can be adapted.

We show that the previously defined ordering is total, hence that we can compare each pair
of tuples of costs. This allows us to define minimal cost flows, afterward.

Lemma 5.4. The lexicographic ordering ≺ on Zm is total.

Proof. The ordering is

• irreflexive, since (v1, . . . ,vm) ⊀ (v1, . . . ,vm),

• transitive, since (v1, . . . ,vm) ≺ (w1, . . . ,wm) ≺ (u1, . . . ,um) implies
(v1, . . . ,vm) ≺ (u1, . . . ,um), and

• connected, since either (v1, . . . ,vm) ≺ (w1, . . . ,wm), (w1, . . . ,wm) ≺ (v1, . . . ,vm),
or (v1, . . . ,vm) = (w1, . . . ,wm),

for all (v1, . . . ,vm), (w1, . . . ,wm), (u1, . . . ,um) ∈ Zm. Hence, the order is total. □

Definition 5.5 (Lexicographic Min Cost Flow). A lexicographic min cost flow is a lexico-
graphic flow on a network (G,u,c) which satisfies a balance function b with minimal costs
regarding the lexicographic ordering ≺.

Theorem 5.1 gives an optimality criterion for lexicographic min cost flows. It states that a
flow has lexicographic minimal costs if there are no augmenting cycles with negative costs.
We give the definition of such cycles next.

Definition 5.6 (Augmenting Cycle). For a network (G,u) and a flow x, a directed cycle C
in the residual graph Gx is an augmenting cycle.

An augmenting cycle is a cycle through the residual graph of a flow x along which we can
augment x such that we obtain an updated flow x′ which satisfies the same balances.

We may also come from the other side and observe two flows x, x′ which satisfy the same
balances and investigate their differences. The next definition is from [Bue22].

Definition 5.7 (Difference Between Flows). Let x, x′ be two flows over the same network
(G,u) satisfying the same balance function b. Then, we define the difference flow z := x′

a
x

over the reverse graph as

z :
←→
A → R≥0, a 7→

max{0, x′(a)− x(a)}, a ∈ A

max{0, x(a)− x′(a)}, a ∈
←−
A .
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We state a few properties that enable us to show Theorem 5.1, afterward. The first property
in the following lemma states that a difference flow satisfies flow conservation. This implies
by Lemma 2.8 that the flow can be decomposed into a set of cycles.

The second property states that the difference flow is 0 on all arcs that do not lie in the
residual graph of the second flow. Hence, it suffices to consider the arcs of the residual
graph (instead of observing all arcs in the reverse graph) in future proofs.

Lemma 5.8. Let z := x′
a

x be a difference flow over a network (G,u). Then, the following
properties hold:

• flow conservation in the reverse graph
←→
G for each v ∈ V, hence∑

a∈δ−(v)

z(a)−
∑

a∈δ+(v)

z(a) = 0,

• and z(a) = 0 for all a < Ax.

The proof can be found in [Bue22]. Next, we analyze the cost difference between two flows,
which is given via the costs of the difference flow.

Lemma 5.9. Given two flows x, x′ over the same network (G,u,c), where c is a lexicographic
cost function, we define the difference flow z := x′

a
x. Then, it holds that

c(z) = c(x′)− c(x).

The proof of this lemma is similar to the proof in [Bue22] with the only difference being
that we consider lexicographic costs.

Proof. We have to show that

c(z) = c(x′)− c(x)

⇔
∑
a∈
←→
A

c(a) · z(a) =
∑
a∈
←→
A

c(a) · x′(a)−
∑
a∈
←→
A

c(a) · x(a)

⇔
∑
a∈A

(
c(a) · z(a)+ c(←−a ) · z(←−a )

)
=

∑
a∈A

c(a) · x′(a)−
∑
a∈A

c(a) · x(a)

⇔
∑
a∈A

c(a) ·
(
z(a)− z(←−a )

)
=

∑
a∈A

c(a) ·
(
x′(a)− x(a)

)
.
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It holds that

z(a)− z(←−a ) =max{0, x′(a)− x(a)}−max{0, x(a)− x′(a)}

=


0, x(a) = x′(a)
x′(a)− x(a), x(a) < x′(a)
−x(a)+ x′(a), x(a) > x′(a)

= x′(a)− x(a),

hence the first equation holds and the lemma is valid. □

Now, we have all the definitions and lemmata to show the correctness of Theorem 5.1:

Theorem 5.1. Let (G,u,c) be a network with a lexicographic cost function c and a balance
function b. A b-flow x is a lexicographic min cost flow if and only if there exists no x-
augmenting cycle with lexicographic negative costs.

Proof. We show the theorem by proving both implications of the equivalence statement.
Suppose that x is a lexicographic min cost b-flow over a network (G,u,c) with lexicographic
costs c and a balance function b. We indicate that this implies that there does not exist a
lexicographic negative cycle in the residual network (G,u,c) via proof by contradiction.

Assume that there exists an x-augmenting lexicographic negative cycle C, hence a cycle
with c(C) < 0 = (0, . . . ,0) and mina∈C ux(a) =: γ > 0. Then, we can augment the flow x along
cycle C by γ and obtain a new b-flow x′ with costs

c(x′) =
∑
a∈A

c(a) · x′(a) =
∑

a∈A\(C∩
←−
C )

c(a) · x(a)+
∑

a∈C∩A

c(a) · (x(a)+γ)+
∑

a∈
←−
C∩A

c(a) · (x(a)−γ)

=
∑
a∈A

c(a) · x(a)+
∑
a∈C

γ · c(a) = c(x)+ γ︸︷︷︸
> 0

· c(C)︸︷︷︸
< 0

< c(x).

The flow x′ also satisfies the balances b and has smaller costs than the flow x, hence x is not
a lexicographic min cost flow and we have a contradiction. Thus, the implication is correct.

Now, we show the reverse implication and assume that there does not exist an x-augmenting
lexicographic negative cycle C. Again, we show the implication via proof by contradiction
and assume that x is not a lexicographic min cost flow.

Then, there exists another flow x′, which satisfies the balances b and has smaller costs
c(x′) < c(x). We observe that there exists a difference flow z := x′

a
x which is not the empty

flow. Furthermore, we know from Lemma 5.8 that the flow conservation holds for z and
hence there exist cycles C1, . . . ,Cn in the residual network (G,u,c)x and values γ1, . . . ,γn ∈

N0 such that the flow z is a linear combination of those cycles with the respective values (by
the Flow Decomposition, see Lemma 2.8).

By Lemma 5.9, it holds that c(z) = c(x′)− c(x). Furthermore, we know that c(x′) < c(x) and
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thus

0 > c(z) = γ1 · c(C1)+ . . .γn · c(Cn).

We derive that there exists a cycle Ci, 1 ≤ i ≤ n, such that c(Ci) < 0 and hence there exists
an x-augmenting cycle with lexicographic negative costs and we have a contradiction. It
follows that the reverse implication is correct and the theorem holds. □

We have proven an optimality criterion for static lexicographic min cost flows.

5.2 Cost Minimization at each Point in Time

In this section, we observe temporally repeated flows from one source to one sink over
a time horizon T . We aim to find flows that maximize multiple objectives and focus on
networks with costs. Here, the immediate question is whether we can find a maximal flow
with minimal total costs. In [Ham89], the author claims that such flows can be found via an
alteration of the temporally repeated flow technique [FJF58], hence by calculating maximal
temporally repeated flows using static flows but with an adapted cost function.

We were not able to reproduce this hypothesis, but we show that we can adapt the temporally
repeated flow technique to find a maximal temporally repeated flow where the costs over all
points in time are minimal. Furthermore, we observe the problem of finding maximal flows
with minimal total costs and give an intuition on the difficulties of the problem.

We start with the temporally repeated flow technique and the algorithm proposed by Ford
and Fulkerson [FJF58]. The algorithm uses the following statement about the relation be-
tween a static flow and a temporally repeated flow created from the static flow.

Lemma 5.10. Given a flow network (G,u, τ), let x be a feasible static flow with path decom-
position y : P→ R≥0, f the associated temporally repeated flow with time horizon T and
τ(p) ≤ T for all p ∈ P. Then, it holds that

value( f ) = T ·value(x)−
∑
a∈A

τ(a) · x(a).

Proof. This is proven by the following equations:

value( f ) =
∑
p∈P

y(p) ·
(
T −τ(p)

)
= T ·

∑
p∈P

y(p)−
∑
p∈P

τ(p) · y(p)

= T ·value(x)−
∑
p∈P

τ(p) · y(p) = T ·value(x)−
∑
p∈P

(∑
a∈p
τ(a)

)
· y(p)

= T ·value(x)−
∑
a∈A

τ(a) ·
(∑

p∈P
a∈p

y(p)
)
= T ·value(x)−

∑
a∈A

τ(a) · x(a).
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Hence the hypothesis holds. □

The previous lemma shows that the value of a temporally repeated flow can be calculated
via the underlying static flow, the transit times in the network, and the time horizon. The
following algorithm from [FJF58] uses this property for the computation of a temporally
repeated flow with maximal value. The algorithm computes a static flow that maximizes
the right-hand side of the equation in Lemma 5.10 and constructs the associated temporally
repeated flow, which consequently has maximal value.

Listing 5.1: Ford-Fulkerson Algorithm for Maximal (s, t)-Flows over Time
1 Input: Network (G,u, τ), source and sink s, t ∈ V, and time horizon T
2 Output: Temporally repeated flow f with time horizon T
3 with maximal flow
4

5 Calculate static (s, t)-flow x that maximizes T ·value(x)−
∑

a∈A τ(a) · x(a)
6 Calculate path decomposition y : P→ R≥0
7 Construct temporally repeated flow f with time horizon T
8 Return f

In the next lemma, we show that such a static flow can be computed in polynomial time.
This implies that the algorithm has polynomial runtime.

Lemma 5.11. Let (G,u, τ) be a network, s ∈ V a sink, t ∈ V a source, and T a time horizon.
Then, a static flow that maximizes

T ·value(x)−
∑
a∈A

τ(a) · x(a)

such that there exists a path decomposition y : P→ R≥0 with τ(p) ≤ T for all p ∈ P with
y(p) > 0 can be computed in polynomial time via a minimal cost flow tranformation.

The following proof is from [Bue22].

Proof. First, we show that such a static flow x can be computed by finding a minimal cost
circulation considering the transit times τ as the costs. Let G be the graph G extended by an
arc (t, s) with capacity u(t, s) :=∞ and τ(t, s) := −T . Furthermore, x is any circulation in G
and x the corresponding flow in G, then the total transit time is

τ(x) = −T · x(t, s)+
∑
a∈A

τ(a) · x(a) = −T · x(t, s)+
∑
a∈A

τ(a) · x(a)

= −T ·value(x)+
∑
a∈A

τ(a) · x(a).

We see that a minimal cost circulation regarding τ maximizes T ·value(x)−
∑

a∈A τ(a) · x(a)
for the corresponding (s, t)-flow. A minimal cost circulation can be computed in polynomial
time regarding the size of the network (G,u, τ) (see [Kle67]).
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It remains to show that, for a minimal cost circulation x in G, the corresponding static flow
x in G satisfies for every flow decomposition y : P∪C→ R≥0 that

τ(p) ≤ T for all p ∈ P with y(p) > 0 and τ(q) = 0 for all q ∈C with y(q) > 0.

• Suppose that τ(p) > T and y(p) > 0 for a path p ∈ P. Then, there exist backward arcs
←−p in the residual network of G with costs

τ(←−p ∪ (s, t)) = − τ(p)︸︷︷︸
<T

+T < 0.

There exists a negative cycle in the residual graph, thus x is not optimal and we have
a contradiction.

• Suppose that τ(q) , 0 and y(q) > 0 for a cycle q ∈ C. Then, it is either τ(q) > 0 and
there exist backward arcs←−q in the residual graph G with costs τ(←−q ) < 0. Thus, there
exists a negative cycle, x is not optimal and we have a contradiction. If τ(q) < 0, then
the contradiction follows directly.

Hence, we can find a static flow satisfying the conditions. □

In the remainder of this section, we adapt the algorithm in Listing 5.1 by updating the cost
function. We consider networks (G,u, τ,c) with costs. First, we show that we can alter the
algorithm such that it computes a maximal temporally repeated flow, where the maximal
costs over all points in time are minimal.

Definition 5.12 (Costs at a Point in Time). Let (G,u, τ,c) be a network with a flow over time
f with time horizon T . For a point in time θ ∈ {0, . . . ,T }, the costs at θ are

c( f , θ) :=
∑
a∈A

c(a) ·
( θ∑
ξ=θ−τ(a)+1

fa(ξ)
)
.

Let us look at an example observing maximal temporally repeated flows on the network in
Figure 5.1 and considering the costs at different points in time.

Example 5.13. Figure 5.1 contains a very simple network, where the path via node v1 has the
same length as the path via node v2. For a time horizon T = 20, the algorithm in Listing 5.1
computes either the flow depicted in Figure 5.2 or the flow depicted in Figure 5.3. Both
flows have the same value. Let us examine the costs at several points in time.

In Figure 5.2 at each point in time smaller than 8, the costs are 0, since there is only flow
along the arc (s,v1) which has zero costs. At time 8 the costs are 3, at time 9 the costs are 6
and remain the same for all points in time smaller than 19.

In Figure 5.3, the costs at points 0 and 1 are 0. Then, the costs increase from 2 at point 2 to
16 at point 9. They remain the same until they start decreasing again at point 13. We can
see that the maximal costs over all points in time in this flow are 16 and greater than the
maximal costs over all points in time for the flow in Figure 5.2 (where the maximum is 6).
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Figure 5.1: A network, where the labels (τ,c) on the arcs represent the transit time and the
costs. The capacity is 1 for each arc.
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Figure 5.2: A maximal temporally repeated flow on the network depicted in Figure 5.1,
where the maximal costs for all points in time are minimal.

For a static flow that maximizes the term in Equation (5.1), we show that the associated
temporally repeated flow is maximal and that the static flow minimizes a certain term. This
insight will help us to compute a maximal temporally repeated flow with minimal costs over
all points in time.

Lemma 5.14. Let (G,u, τ,c) be a network and T a time horizon. Set M :=
∑

a∈A c(a) ·u(a)+1.
Let x be a feasible static flow that maximizes

M ·T ·value(x)−
∑
a∈A

(
M ·τ(a)+ c(a) ·τ(a)

)
· x(a) (5.1)

with path decomposition y : P→ R≥0 and τ(p) ≤ T for all p ∈ P. Let f be the associated
temporally repeated flow with time horizon T .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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t

Figure 5.3: A maximal temporally repeated flow on the network depicted in Figure 5.1. The
maximal costs for all points in time are not minimal.
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Then, f has maximal value and x is the associated static flow which minimizes
∑

a∈A c(a) ·
τ(a) · x(a).

Proof. With Lemma 5.10, it holds that

M ·T ·value(x)−
∑
a∈A

(
M ·τ(a)+ c(a) ·τ(a)

)
· x(a)

= M ·T ·value(x)−M ·
∑
a∈A

τ(a) · x(a)−
∑
a∈A

c(a) ·τ(a) · x(a)

= M ·
(
T ·value(x)−

∑
a∈A

τ(a) · x(a)
)
−

∑
a∈A

c(a) ·τ(a) · x(a)

= M ·value( f )−
∑
a∈A

c(a) ·τ(a) · x(a).

Since x(a) ≤ u(a) for all a ∈ A, it follows that c(x) =
∑

a∈A c(a) · x(a) ≤
∑

a∈A c(a) ·u(a) < M.
Furthermore, it follows from Theorem 3.20 that value( f ) ∈ N0. Thus, M ·value( f ) ∈ N0 and
maximizing the term in Equation (5.1) yields a static flow that maximizes the value of the
associated temporally repeated flow and then minimizes the product of costs and transit time
for the static flow. □

If the underlying static flow x minimizes the sum
∑

a∈A c(a) ·τ(a) · x(a), then this implies that
it minimizes the maximal costs over all points in time for the temporally repeated flow (if
some additional properties are satisfied).

Lemma 5.15. We assume the settings stated in Lemma 5.14. If τ(p) ≤ 1
2T for all p ∈ P,

then f is a maximal flow, where the maximal costs for all points in time θ ∈ {0, . . . ,T } are
minimized, hence f minimizes

max{ c( f , θ) | θ ∈ {0, . . . ,T } }.

Proof. Suppose that x maximizes the term in Equation (5.1). Then, the associated tempo-
rally repeated flow f has maximal value and

∑
a∈A c(a) ·τ(a) · x(a) is minimized.

Claim: There exists a point in time ζ ∈ {0, . . . ,T } such that, for all a ∈ A,

fa(ζ −τ(a)+1) = fa(ζ −τ(a)+2) = . . . = fa(ζ −1) = fa(ζ) = x(a).

Since τ(p) ≤ T
2 for all p ∈ P and the transit times are integer, we derive that τ(p) ≤

⌊
T
2

⌋
and we set ζ :=

⌊
T
2

⌋
. Let (v,w) = a ∈ A and p ∈ P with a ∈ p, then it follows that p ∈

Pa(ζ−τ(a)+1)∩Pa(ζ−τ(a)+2)∩· · ·∩Pa(ζ−1)∩Pa(ζ), hence flow is sent along path p at
arc a at the time points ζ−τ(a)+1, . . . , ζ. We prove this by checking the definition of the sets
Pa(θ) given in Definition 2.16, where it says that p ∈ Pa(θ) if τ(p[s,v])≤ θ and τ(p[w,t])≤ T −θ
for θ ∈ {0, . . . ,T }.
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It holds that

τ(p[s,v]) ≤ τ(p)−τ(a) ≤
⌊T

2

⌋
−τ(a) < ζ −τ(a)+1 < ζ −τ(a)+2 < . . . < ζ −1 < ζ

and

τ(p[w,t])+ ζ −τ(a)+1 < τ(p[w,t])+ ζ −τ(a)+2 < . . . < τ(p[w,t])+ ζ ≤
⌊T

2

⌋
−τ(a)− ζ ≤ T,

hence the inequalities are satisfied and p ∈ Pa(ζ − τ(a)+ 1)∩Pa(ζ − τ(a)+ 2)∩ · · · ∩Pa(ζ −
1)∩Pa(ζ). Then, we obtain that fa(ζ −τ(a)+1) = fa(ζ −τ(a)+2) = . . . = fa(ζ) = x(a).

Since fa(θ) ≤ x(a) for θ ∈ {0, . . . ,T } and via the previous claim, it holds that

max{ c( f , θ) | θ ∈ {0, . . . ,T } } = max


∑
a∈A

c(a) ·
( θ∑
ξ=max

{θ−τ(a)+1, 0}

fa(ξ)
) ∣∣∣∣∣∣∣∣∣∣∣ θ ∈ {0, . . . ,T }


=

∑
a∈A

c(a) ·
( ζ∑
ξ=ζ−τ(a)+1

x(a)
)
=

∑
a∈A

c(a) ·
(
τ(a) · x(a)

)

for ζ :=
⌊

T
2

⌋
. Hence, minimizing

∑
a∈A c(a) ·τ(a) · x(a) minimizes the maximal costs over all

points in time θ ∈ {0, . . . ,T }. □

If we update the algorithm in Listing 5.1 such that the static flow maximizes the term in
Equation (5.1), then it follows from Lemma 5.15 that the updated algorithm yields a tempo-
rally repeated flow with maximal values that minimizes the maximal costs over all points in
time, see Listing 5.2.

Listing 5.2: Maximal (s, t)-Flows with Minimal Costs over all Points in Time
1 Input: Network (G,u, τ,c), source and sink s, t ∈ V, and time horizon T
2 Output: Temporally repeated flow f with time horizon T
3 with maximal flow and minimized
4 maximal costs over all points in time
5

6 Set d : A→ N0, a 7→ M ·τ(a)+ c(a) ·τ(a)
7 Calculate static (s, t)-flow x that maximizes M ·T ·value(x)−

∑
a∈A d(a) · x(a)

8 Calculate path decomposition y : P→ R≥0
9 Construct temporally repeated flow f with time horizon T

10 Return f

Similar to Lemma 5.11, we show that the algorithm has polynomial runtime by proving that
a static flow that maximizes the Equation (5.1) can be found in polynomial time. This is
true for general cost functions d : A→ N0 which can be computed in polynomial time from
u, τ, and c.
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Lemma 5.16. Given a network (G,u, τ,d), a sink s ∈ V, a source t ∈ V, a time horizon T and
M ∈ N. Then, a static flow that maximizes

M ·T ·value(x)−
∑
a∈A

d(a) · x(a)

such that there exists a path decomposition y : P→ R≥0 with τ(p) ≤ T for all p ∈ P with
y(p) > 0 can be computed in polynomial time via a minimal cost flow tranformation.

The proof of this lemma resembles the proof in Lemma 5.11, except that T is replaced by
M ·T and τ is partially replaced by d.

Proof. Again, it is possible to compute such a static flow via the computation of a minimal
cost circulation in an adapted flow network. Let G be the graph G extended by an arc (t, s)
with capacity u(t, s) :=∞ and d(t, s) := −M ·T . Furthermore, x is any circulation in G and x
the corresponding flow in G, then

d(x) = −M ·T · x(t, s)+
∑
a∈A

d(a) · x(a) = −M ·T · x(t, s)+
∑
a∈A

d(a) · x(a)

= −M ·T ·value(x)+
∑
a∈A

d(a) · x(a).

We see that a minimal cost circulation regarding d maximizes M ·T ·value(x)−
∑

a∈A d(a) ·
x(a) can be computed in polynomial time regarding the size of the network (G,u, τ,d).

Claim: Let x be a minimal cost circulation in G. Then, the corresponding static flow x in G
satisfies for every flow decomposition y : P∪C→ R≥0 that

τ(p) ≤ T for all p ∈ P with y(p) > 0 and τ(q) = 0 for all q ∈C with y(q) > 0.

We need to extend the proof of the claim a little bit (in comparison to the proof of Lemma 5.11).

• Suppose that τ(p) > T and y(p) > 0 for a path p ∈ P. Then, it follows that d(p) > M ·T
and y(p) > 0, hence there exist backwards arcs←−p in the residual graph of G with costs

d(←−p ∪ (s, t)) = − d(p)︸︷︷︸
<M·T

+M ·T < 0.

There exists a negative cycle in the residual graph, thus x is not optimal and we have
a contradiction.

• Suppose that τ(q) , 0 and y(q) > 0 for a cycle q ∈C. Then, either τ(q) > 0, hence also
d(q) > 0 and there exist backwards arcs←−q in the residual graph G with costs d(←−q ) < 0.
Thus, there exists a negative cycle, x is not optimal and we have a contradiction. If
τ(q) < 0, then also d(q) < 0, and the contradiction follows directly.

Hence, such a flow can be calculated in polynomial time. □

We consider an application of the algorithm in Listing 5.2 for the problem of the transporta-
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tion of beds in hospitals.

Example 5.17. Let us consider a network (G,u, τ,c) that models a hospital where beds need
to be transported from the place s ∈ V to the place t ∈ V . The capacity and the transit time
of the pathways in the hospital are modeled by the functions u and τ.

Suppose that we need to send the beds as fast as possible from s to v, but we would like
to additionally minimize the number of people working on the transportation. Suppose
furthermore that one person is needed to move one bed along a corridor. Then, the maximal
number of beds that are in the corridors at the same time is also the number of people that
are needed.

If we set the cost function to c(a) = 1 for all a ∈ A then the execution of the algorithm cal-
culates a temporally repeated flow with maximal value (which first and foremost transports
as many beds as possible) but meanwhile minimizes the number of working people.

Lastly, we approach the problem of finding a maximal temporally repeated flow with mini-
mal total costs. For a temporally repeated flow f over a network (G,u, τ,c), the costs are

c( f ) =
∑
p∈P

c(p) · y(p) · (T −τ(p))

= T ·
∑
p∈P

c(p) · y(p)−
∑
p∈P

c(p) · y(p) ·τ(p)

= T · c(x)−
∑
p∈P

c(p) · x(p) ·τ(p).

If we want to apply the same technique, we need to find a static flow x that maximizes

M ·
(
T ·value(x)−

∑
a∈A

τ(a) · x(a)
)
+T · c(x)−

∑
p∈P

c(p) · x(p) ·τ(p)

= M ·T ·value(x)−M ·
∑
a∈A

τ(a) · x(a)+T ·
∑
a∈A

c(a) · x(a)−
∑
p∈P

c(p) · x(p) ·τ(p)

= M ·T ·value(x)−
∑
a∈A

(
M ·τ(a)−T · c(a)

)
· x(a)−

∑
p∈P

c(p) · x(p) ·τ(p)︸                  ︷︷                  ︸
Technique not applicable.

,

but this term depends on the path decomposition of the static flow x. It is not possible to
maximize such a term via the technique in Lemma 5.11 and Lemma 5.16 and hence this
approach fails.
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6 Conclusion

Based on the problem of transporting freshly made beds in a hospital, we analyzed different
types of flows over time and the restriction of common research problems on those sets of
flows. Those special flows aimed to represent solutions that are as structured as possible,
hence enabling humans to understand and remember the represented transportation plans
as fast as possible, but also as optimal as possible (depending on the respective research
problem). We proceeded to analyze the integrality of the problems and proved that the
Quickest Transshipment Problem can be efficiently solved for general flows over time if
solutions of the Min Cost Flow over Time Problem can be computed in polynomial time.

Then, we considered the Quickest Transshipment Problem for k-uniform flows on trees
(where k is at most the number of sinks h) and proposed a naive algorithm that computes
a solution that fills one sink per subflow in polynomial time. We enhanced the algorithm
and obtained lower and upper bounds for the optimal solution. Next, we analyzed tree net-
works and proved that each tree network is equivalent to an almost-binary tree network, that
allows us to consider only almost-binary tree networks for our research. We showed how
to calculate optimal solutions for small almost-binary tree networks. For larger networks,
this calculation method seems very inefficient. Unfortunately, it is also not evident how to
calculate the optimal solution of a large network from the optimal solutions of smaller parts
of the network in a greedy way. We went on to analyze the linear relaxation of the problem
and gave an algorithm which allows us to calculate an integer solution from a solution of
the relaxation. This solution is an optimal load-consistent k-uniform flow (meaning that the
load to each sink is fixed until it drops to zero), but not an optimal k-uniform flow.

In the last part, we proved an optimality criterion for static flows with lexicographic costs
that is an adaptation of the theorem by Klein on static flows. Then, we analyzed the algo-
rithm by L.R. Ford and D.R. Fulkerson for finding maximal temporally repeated flows from
a single source to a single sink [FJF58]. We extended the algorithm such that it allows us to
create maximal temporally repeated flows where the maximal costs over all points in time
are minimized. This algorithm could be used to create a transportation plan in a hospital
that is as fast as possible but engages as few employees as possible.

For the future, there are many interesting questions that allow for further research. Since
the structure of hospitals is usually not a tree, it would be crucial to explore the Quickest
Transshipment Problem for k-uniform flows on differently structured graphs, such as series-
parallel graphs, cliques, and general graphs. Here, it could be promising to consider the
enhanced naive algorithm in Listing 4.2 and analyze how it could be executed on different
types of graphs.

The transformation of tree networks could be refined such that the network is transformed
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into an equivalent almost-binary tree network with minimal capacities. For this purpose, we
need to define another operation that reduces the capacities if possible. This could enhance
the runtime of algorithms whose complexity depends on the capacities of the arcs.

For almost-binary trees, we could analyze the solution sets and search for criteria that filter
all solutions which might be relevant for the construction of solutions on larger networks.
This might enable us to create a greedy-like algorithm for the computation of optimal solu-
tions on tree networks of arbitrary sizes.

Furthermore, we could analyze application scenarios for the algorithm for maximal tempo-
rally repeated flows with minimized costs at each point in time. Currently, we use the costs
a 7→M ·τ(a)+c(a) ·τ(a) (for arcs a ∈ A), but we could also consider other cost functions like
a 7→ M ·τ(a)+ c(a), a 7→ M ·τ(a)+τ(a), and a 7→ M ·τ(a)+ c(a)

τ(a) , and observe their meanings
and applications.
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