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Motivation: Transportation of Beds in a Hospital
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• Transportation of hospital beds during the day blocks elevators for time-critical
processes

⇒ Distribution after the main working hours? What would be important?
• As quick as possible to relieve the employees
• As easy to remember as possible to reduce confusion
• As few employees involved as possible
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Flow Networks and Static Flows

Definition

For
• a directed graph G = (V,A),
• a capacity function u : A→ N0,
• a transit time function τ : A→ N0, and
• a cost function c : A→ N0,

(G,u), (G,u,c), (G,u, τ) and (G,u, τ,c) are
networks.
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Figure: Network with labels u and b.
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• a cost function c : A→ N0,

(G,u), (G,u,c), (G,u, τ) and (G,u, τ,c) are
networks.

Definition

A function b : V → Z with
∑

v∈V b(v) = 0 is a
balance function.
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Flow Networks and Static Flows

Definition

For
• a network (G,u), and
• a balance function b,

a static b-flow is a function x : A→ R≥0,
which satisfies
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Flow Networks and Static Flows

Definition

For
• a network (G,u), and
• a balance function b,

a static b-flow is a function x : A→ R≥0,
which satisfies

1. the capacity constraint 0 ≤ x(a) ≤ u(a)
for all a ∈ A, and
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Flow Networks and Static Flows

Definition

For
• a network (G,u), and
• a balance function b,

a static b-flow is a function x : A→ R≥0,
which satisfies

2. the flow conservation∑
a∈δ−(v)

x(a)−
∑

a∈δ+(v)

x(a) = −b(v)

for all v ∈ V.
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Flows over Time

Definition

For
• a network (G,u, τ),
• a time horizon T ∈ N0, and
• a balance function b,

a b-flow over time is a family of functions
fa : Z→ R≥0, a ∈ A, which satisfy
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and b.
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Flows over Time

Definition

For
• a network (G,u, τ),
• a time horizon T ∈ N0, and
• a balance function b,

a b-flow over time is a family of functions
fa : Z→ R≥0, a ∈ A, which satisfy

2. the flow completion fa(θ) = 0 for all
a ∈ A and θ > T −τa,
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Flows over Time

Definition

For
• a network (G,u, τ),
• a time horizon T ∈ N0, and
• a balance function b,

a b-flow over time is a family of functions
fa : Z→ R≥0, a ∈ A, which satisfy

3. the weak flow conservation for all
v ∈ V \ {s} and θ ∈ {0, . . . ,T }
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Flows over Time

Definition

For
• a network (G,u, τ),
• a time horizon T ∈ N0, and
• a balance function b,

a b-flow over time is a family of functions
fa : Z→ R≥0, a ∈ A, which satisfy

5. and fa(θ) = 0 for θ < {0, . . . ,T }.
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Uniform Flows

Definition

For
• a network (G,u, τ),
• a time horizon T ∈ N0, and
• a static flow x over (G,u) with path

decomposition y : P→ R≥0 and
t :=maxp∈P τ(p),

the associated uniform flow f is
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Uniform Flows

Definition

For
• a network (G,u, τ),
• a time horizon T ∈ N0, and
• a static flow x over (G,u) with path

decomposition y : P→ R≥0 and
t :=maxp∈P τ(p),

the associated uniform flow f is

fa(θ) :=
∑

p∈Pa(θ)

y(p) ∀a ∈ A, θ ∈ {0, . . . ,T },

where
Pa(θ) := {p ∈ P | a ∈ p, 0 ≤ θ−τ(p[s,v]) ≤ T − t}
for a = (v,w) and p = (s, . . . , ti),
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Temporally Repeated Flows

Definition

For
• a network (G,u, τ),
• a time horizon T ∈ N0, and
• a static flow x over (G,u) with path

decomposition y : P→ R≥0 and
t :=maxp∈P τ(p),

the assoc. temporally repeated flow f is
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k-Uniform and k-Temporally Repeated Flows
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Network Flow Problems

• Max Flow Problem

• Min Cost Flow Problem
• Max Flow over Time Problem
• Min Cost Flow over Time Problem
• Earliest Arrival Flow over Time

Problem
• Quickest Transshipment Problem
• Min Cost Uniform Flow Problem
• Quickest Transshipment Problem for

Uniform Flows
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Figure: Network with labels representing u.
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Equivalent Networks

Definition

G is a tree, then (G,u, τ,c) is a tree network.
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Equivalent Networks

Definition

G is a tree, then (G,u, τ,c) is a tree network.

Definition

Flow f on (G,u, τ,c) and f ′ on (G′,u′, τ′,c′).
Then f ≡ f ′ if
• the number of sinks is equal,
• for each sink at each point in time the

same number of units arrives with the
same aggregated costs.
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Equivalent Networks

Definition

Two tree networks (G,u, τ,c), (G′,u′, τ′,c′)
are equivalent,

(G,u, τ,c) ≡ (G′,u′, τ′,c′),

if for each flow f on (G,u, τ,c) there exists
an equivalent flow f ′ on the other network
(G′,u′, τ′,c′) and vice versa.
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(G,u, τ,c) ≡ (G′,u′, τ′,c′),

if for each flow f on (G,u, τ,c) there exists
an equivalent flow f ′ on the other network
(G′,u′, τ′,c′) and vice versa.

⇒ For all mentioned network problems:
Given two equivalent networks, all optimal
solutions have the same objective value.
The optimal solutions have equivalent
counterparts.
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Merge Nodes

Definition

Tree network (G,u, τ,c) and node v ∈ V. We
define operation ρ1((G,u, τ,c),v):
It maps to (G,u, τ,c) if v is
• a leaf,
• has at least two children, or
• is the root.

Otherwise, it maps to (G′,u′, τ′,c′) which
resembles the network (G,u, τ,c) with the
changes in the picture.

Lemma

For tree network (G,u, τ,c) and any node
v ∈ V, it is ρ1((G,u, τ,c),v) ≡ (G,u, τ,c).

v

v0

(u, τ,c)

(u0, τ0,c0)

v0

(min{u,u0},
τ+τ0, c+c0)

ρ1
==⇒
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Split Children

Definition
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Single Child
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Almost-binary Tree

Definition

An almost-binary tree is a tree G with
• the root node r ∈ V has at most one

child v ∈ V, and
• the subtree of v is a complete binary

tree (if v exists).

s

t2t1 t3

(4,1)
(3,2)

(6,6)

s

s0

t1 v1

t2 t3

(13,0)

(4,1)

(9,0)

(3,2)

(6,6)

Figure: Networks with labels representing (u, τ).
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Almost-binary Tree

Theorem

For each tree network (G,u, τ,c), there
exists an equivalent tree network where the
underlying graph is an almost-binary tree.
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Equivalence Classes of Trees
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Equivalence Classes of Trees
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Quickest Transshipment on Trees

Definition

Given a tree network (G,u, τ), and a balance function b, find an integer k-uniform flow
with arbitrary k ≤ h which
• satisfies the balances and
• has minimal overall time horizon T ∈ N.
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Quickest Transshipment on Trees - One Sink

Definition

Given a tree network (G,u, τ), and a
balance function b, find an integer
k-uniform flow with arbitrary k ≤ h which
• satisfies the balances and
• has minimal overall time horizon.

Lemma

For an almost-binary tree network
(G,u, τ,c) with one leaf and balance
function b. Then, the minimal time horizon
for a 1-uniform flow satisfying b is

T :=
⌈
b
u

⌉
+τ−1.

s

10

t

-10

(2,3)

Figure: Network with labels representing (u, τ)
and b.

0 1 2 3 4 5 6 T = 7

s

t

2 2 2 2 2

Figure: Labels represent loads on arcs.
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Quickest Transshipment on Trees - Two Sinks

0 1 2 3 4 5 6 7 T = 8
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v

t1

t2

3 3 3 3

2 2 2 2
1 1 1 1

2 2 2

2 2 2

Figure: Labels represent loads on arcs.
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Figure: Network with labels representing (u, τ)
and b.
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Quickest Transshipment on Trees - Two Sinks

Lemma

We set ui :=min{u,ui}, τi := τ+τi.
The quickest 1- or 2-uniform flow has time horizon

T :=min
(
{ f (u1,τ1,b1,u2,τ2,b2) }

∪ { g(u1,τ1,b1,u2,τ2,b2, x1, x2) |

1 ≤ x1 ≤ u1, 1 ≤ x2 ≤ u2, x1+ x2 ≤ u }

∪ { h(τ1,b1,τ2,b2, x1, x2,y1,y2,d) |

1 ≤ x1 ≤ u1, 1 ≤ y1 ≤ u1, 1 ≤ x2 ≤ u2,

1 ≤ y2 ≤ u2, x1+ x2 ≤ u, y1+ y2 ≤ u,

d <min
{⌈

b1
x1

⌉
,
⌈

b2
x2

⌉}
,
⌈

b1−d·x1
y1

⌉
=
⌈

b2−d·x2
y2

⌉
}
)
.

It is f : N6
0→ N0, (u1,τ1,b1,u2,τ2,b2) 7→

⌈
b1
u1

⌉
+
⌈

b2
u2

⌉
+max

{
τ2,τ1−

⌈
b2
u2

⌉}
−1, τ1 ≥ τ2,

f (u2,τ2,b2,u1,τ1,b1), otherwise.

s

b

v(u,τ)

t1

-b1

(u1,τ1)

t2

-b2

(u2,τ2)

Figure: Network with labels
representing (u, τ) and b.
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Quickest Transshipment on Trees - More Sinks

Optimal Solution for Subgraph
0 1 2 3 4 5 6 7 8 T = 9
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2 2 2 2
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Figure: Network with labels representing (u, τ)
and b.
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Load-Consistent Flows

1-Uniform Flow with Minimal Time Horizon for Tree Network

min d s.t.
∑
i∈Ia

−bi ≤ d ·u(a), a ∈ A, Ia := {i ∈ {1, . . . ,h} | a ∈ pi}, d ∈ N0.

⇒ Linear algorithm transforms an optimal solution of the linear relaxation into an
optimal load-consistent flow.

0 1 2 3 4 5 6 7 8 9 10 11 12 T = 13
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t3

4 4 4 4 4

2 2 2 2 2

1 1 1 1 1
1 1 1 1 1

2 2 2 2 2
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Cost Minimization at each Point in Time

Definition

Given a network (G,u, τ,c), source and sink s, t ∈ V, and a time horizon T ∈ N0,
find an integer temporally repeated flow with
• maximal flow and
• minimized maximal costs over all points in time.

s

v1(1,4,0)

v2(1,5,2)

(1,1,8)

t

 

(1,1,0)

Figure: Network with labels representing (u, τ,c).
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Cost Minimization at each Point in Time

s

v1(1,4,0)

v2(1,5,2)

(1,1,8)

t

 

(1,1,0)

Figure: Network with labels representing (u, τ,c).

Maximal costs are 10 at time 4.

0 1 2 3 4 5 6 7 8 9 T = 10

s

v1

v2

t

2 2 2 2 2

Maximal costs are 8 at time 4.

0 1 2 3 4 5 6 7 8 9 T = 10

s

v1

v2

t

8 8 8 8 8

• Both flows have total value 5 and time horizon 10.
• The left flow has total costs 10, whereas the right flow has total costs 40.
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Cost Minimization at each Point in Time

Listing: Ford-Fulkerson Algorithm for Maximal
(s, t)-Flows over Time

Input: Network (G,u, τ),
source and sink s, t ∈ V, and
time horizon T

Output: Temporally repeated flow f
with time horizon T
with maximal flow

Calculate static (s, t)-flow x
that maximizes
T ·value(x)−

∑
a∈A τ(a) · x(a)

Calculate path decomposition
Construct temporally repeated flow f
with time horizon T

Return f

Listing: Maximal (s, t)-Flows with Minimal Costs
over all Points in Time

Input: Network (G,u, τ,c),
source and sink s, t ∈ V, and
time horizon T

Output: Temporally repeated flow f
with time horizon T
with maximal flow and minimized
maximal costs at each time point

Set d : A→ N0, a 7→ M ·τ(a)+ c(a) ·τ(a)
Calculate static (s, t)-flow x
that maximizes
M ·T ·value(x)−

∑
a∈A d(a) · x(a)

Calculate path decomposition
Construct temporally repeated flow f
with time horizon T

Return f
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Cost Minimization at each Point in Time

T ·value(x)−
∑
a∈A

τ(a) · x(a) ↔ M ·T ·value(x)−
∑
a∈A

d(a) · x(a)

⇔ M ·T ·value(x)−
∑
a∈A

(
M ·τ(a)+ c(a) ·τ(a)

)
· x(a)

⇔ M ·
(
T ·value(x)−

∑
a∈A

τ(a) · x(a)︸                             ︷︷                             ︸
Maximize first.

)
−
∑
a∈A

c(a) ·τ(a) · x(a)︸                    ︷︷                    ︸
Minimize second.
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Conclusion

Achievements

• Several types of flows over time

• Observation of tree networks and notion of equivalence
• Two linear algorithms that calculate non-optimal solutions of the QTP on Trees
• Polynomial algorithm that maximizes value and minimizes costs

Future Work

• Computation of equivalent almost-binary tree with minimal capacities
• Analyze QTP on differently structured graphs
• Explore whether the solutions of subtrees for almost-binary tree networks can be

restricted to a very small (of constant size?) set of relevant solutions
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